as.bipartition | Convert a mlresult to a bipartition matrix |
as.matrix.mlconfmat | Convert a multi-label Confusion Matrix to matrix |
as.matrix.mlresult | Convert a mlresult to matrix |
as.mlresult | Convert a matrix prediction in a multi label prediction |
as.probability | Convert a mlresult to a probability matrix |
as.ranking | Convert a mlresult to a ranking matrix |
baseline | Baseline reference for multilabel classification |
br | Binary Relevance for multi-label Classification |
brplus | BR+ or BRplus for multi-label Classification |
cc | Classifier Chains for multi-label Classification |
clr | Calibrated Label Ranking (CLR) for multi-label Classification |
compute_multilabel_predictions | Compute the multi-label ensemble predictions based on some... |
create_holdout_partition | Create a holdout partition based on the specified algorithm |
create_kfold_partition | Create the k-folds partition based on the specified algorithm |
create_random_subset | Create a random subset of a dataset |
create_subset | Create a subset of a dataset |
cv | Multi-label cross-validation |
dbr | Dependent Binary Relevance (DBR) for multi-label... |
ebr | Ensemble of Binary Relevance for multi-label Classification |
ecc | Ensemble of Classifier Chains for multi-label Classification |
eps | Ensemble of Pruned Set for multi-label Classification |
esl | Ensemble of Single Label |
fill_sparse_mldata | Fill sparse dataset with 0 or " values |
fixed_threshold | Apply a fixed threshold in the results |
foodtruck | Foodtruck multi-label dataset. |
homer | Hierarchy Of Multilabel classifiER (HOMER) |
is.bipartition | Test if a mlresult contains crisp values as default |
is.probability | Test if a mlresult contains score values as default |
lcard_threshold | Threshold based on cardinality |
lift | LIFT for multi-label Classification |
lp | Label Powerset for multi-label Classification |
mbr | Meta-BR or 2BR for multi-label Classification |
mcut_threshold | Maximum Cut Thresholding (MCut) |
merge_mlconfmat | Join a list of multi-label confusion matrix |
mldata | Fix the mldr dataset to use factors |
mlknn | Multi-label KNN (ML-KNN) for multi-label Classification |
mlpredict | Prediction transformation problems |
mltrain | Build transformation models |
multilabel_confusion_matrix | Compute the confusion matrix for a multi-label prediction |
multilabel_evaluate | Evaluate multi-label predictions |
multilabel_measures | Return the name of all measures |
multilabel_prediction | Create a mlresult object |
normalize_mldata | Normalize numerical attributes |
ns | Nested Stacking for multi-label Classification |
partition_fold | Create the multi-label dataset from folds |
pcut_threshold | Proportional Thresholding (PCut) |
plus-.mlconfmat | Join two multi-label confusion matrix |
ppt | Pruned Problem Transformation for multi-label Classification |
predict.BASELINEmodel | Predict Method for BASELINE |
predict.BRmodel | Predict Method for Binary Relevance |
predict.BRPmodel | Predict Method for BR+ (brplus) |
predict.CCmodel | Predict Method for Classifier Chains |
predict.CLRmodel | Predict Method for CLR |
predict.DBRmodel | Predict Method for DBR |
predict.EBRmodel | Predict Method for Ensemble of Binary Relevance |
predict.ECCmodel | Predict Method for Ensemble of Classifier Chains |
predict.EPSmodel | Predict Method for Ensemble of Pruned Set Transformation |
predict.ESLmodel | Predict Method for Ensemble of Single Label |
predict.HOMERmodel | Predict Method for HOMER |
predict.LIFTmodel | Predict Method for LIFT |
predict.LPmodel | Predict Method for Label Powerset |
predict.MBRmodel | Predict Method for Meta-BR/2BR |
predict.MLKNNmodel | Predict Method for ML-KNN |
predict.NSmodel | Predict Method for Nested Stacking |
predict.PPTmodel | Predict Method for Pruned Problem Transformation |
predict.PruDentmodel | Predict Method for PruDent |
predict.PSmodel | Predict Method for Pruned Set Transformation |
predict.RAkELmodel | Predict Method for RAkEL |
predict.RDBRmodel | Predict Method for RDBR |
predict.RPCmodel | Predict Method for RPC |
print.BRmodel | Print BR model |
print.BRPmodel | Print BRP model |
print.CCmodel | Print CC model |
print.CLRmodel | Print CLR model |
print.DBRmodel | Print DBR model |
print.EBRmodel | Print EBR model |
print.ECCmodel | Print ECC model |
print.EPSmodel | Print EPS model |
print.ESLmodel | Print ESL model |
print.kFoldPartition | Print a kFoldPartition object |
print.LIFTmodel | Print LIFT model |
print.LPmodel | Print LP model |
print.majorityModel | Print Majority model |
print.MBRmodel | Print MBR model |
print.mlconfmat | Print a Multi-label Confusion Matrix |
print.MLKNNmodel | Print MLKNN model |
print.mlresult | Print the mlresult |
print.NSmodel | Print NS model |
print.PPTmodel | Print PPT model |
print.PruDentmodel | Print PruDent model |
print.PSmodel | Print PS model |
print.RAkELmodel | Print RAkEL model |
print.randomModel | Print Random model |
print.RDBRmodel | Print RDBR model |
print.RPCmodel | Print RPC model |
prudent | PruDent classifier for multi-label Classification |
ps | Pruned Set for multi-label Classification |
rakel | Random k-labelsets for multilabel classification |
rcut_threshold | Rank Cut (RCut) threshold method |
rdbr | Recursive Dependent Binary Relevance (RDBR) for multi-label... |
remove_attributes | Remove attributes from the dataset |
remove_labels | Remove labels from the dataset |
remove_skewness_labels | Remove unusual or very common labels |
remove_unique_attributes | Remove unique attributes |
remove_unlabeled_instances | Remove examples without labels |
replace_nominal_attributes | Replace nominal attributes Replace the nominal attributes by... |
rpc | Ranking by Pairwise Comparison (RPC) for multi-label... |
scut_threshold | SCut Score-based method |
sub-.mlresult | Filter a Multi-Label Result |
subset_correction | Subset Correction of a predicted result |
summary.mltransformation | Summary method for mltransformation |
toyml | Toy multi-label dataset. |
utiml | utiml: Utilities for Multi-Label Learning |
utiml_measure_names | Return the name of measures |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.