R/neighbors.R

Defines functions is_binary_metric sparse_tri_nn sparse_nn dist_nn FNN_nn annoy_search_parallel annoy_search_serial annoy_search get_rcppannoy create_ann annoy_build annoy_create annoy_nn nn_is_hnsw nn_is_annoy nn_is_precomputed nn_is_single find_nn

find_nn <- function(X, k, include_self = TRUE, method = "fnn",
                    metric = "euclidean",
                    n_trees = 50, search_k = 2 * k * n_trees,
                    nn_args = nn_args,
                    tmpdir = tempdir(),
                    n_threads = NULL,
                    grain_size = 1,
                    ret_index = FALSE,
                    sparse_is_distance = TRUE,
                    verbose = FALSE) {
  if (is.null(n_threads)) {
    n_threads <- default_num_threads()
  }

  if (inherits(X, "dist")) {
    res <- dist_nn(X, k, include_self = include_self, verbose = verbose)
  } else if (sparse_is_distance && is_sparse_matrix(X)) {
    # sparse distance matrix
    if (Matrix::isTriangular(X)) {
      res <- sparse_tri_nn(X, k, include_self = include_self, verbose = verbose)
    } else {
      res <- sparse_nn(X, k, include_self = include_self, verbose = verbose)
    }
  } else {
    if (is_sparse_matrix(X) && method != "nndescent") {
      stop("Sparse matrix input only supported for nndescent method.")
    }
    # normal matrix
    switch(method,
      "fnn" = {
        res <- FNN_nn(X, k = k, include_self = include_self)
      },
      "annoy" = {
        nn_args_names <- names(nn_args)

        if ("n_trees" %in% nn_args_names) {
          n_trees <- nn_args$n_trees
        }

        if ("search_k" %in% nn_args_names) {
          search_k <- nn_args$search_k
        }

        res <- annoy_nn(
          X,
          k = k,
          metric = metric,
          n_trees = n_trees,
          search_k = search_k,
          tmpdir = tmpdir,
          n_threads = n_threads,
          ret_index = ret_index,
          verbose = verbose
        )
      },
      "hnsw" = {
        nn_args$X <- X
        nn_args$k <- k
        nn_args$metric <- metric
        nn_args$n_threads <- n_threads
        nn_args$verbose <- verbose
        nn_args$ret_index <- ret_index

        res <- do.call(hnsw_nn, nn_args)
      },
      "nndescent" = {
        res <- nndescent_nn(
          X,
          k = k,
          metric = metric,
          nn_args = nn_args,
          n_threads = n_threads,
          ret_index = ret_index,
          verbose = verbose
        )
      },
      stop("Unknown method: ", method)
    )
  }
  res
}

# an nn graph not in a list
nn_is_single <- function(nn) {
  (is.list(nn) && !is.null(nn$idx)) || is_sparse_matrix(nn)
}

# TRUE if nn is a sparse matrix or an untagged list. This covers passing in
# a single nn graph, sparse distance matrix or list thereof, but excludes a
# tagged annoy index or a string like "euclidean"
nn_is_precomputed <- function(nn) {
  (is.list(nn) && is.null(nn$type)) || is_sparse_matrix(nn)
}

# TRUE if we are using an annoy index
nn_is_annoy <- function(ann) {
  is.list(ann) && !is.null(ann$type) && startsWith(ann$type, "annoy")
}

nn_is_hnsw <- function(ann) {
  is.list(ann) && !is.null(ann$type) && startsWith(ann$type, "hnsw")
}

# n_trees - number of trees to build when constructing the index. The more trees
# specified, the larger the index, but the better the results. largeVis uses 10
# trees for datasets with N = 10,000 observations, 20 trees for datasets up to N
# = 1,000,000, 50 trees for N up to 5,000,000 and 100 trees otherwise
# search_k - the number of nodes to search during the neighbor retrieval. The
# larger k, the more accurate results, but the longer the search takes. Default
# is k * n_trees.
#' @importFrom methods new
annoy_nn <- function(X, k = 10,
                     metric = "euclidean",
                     n_trees = 50, search_k = 2 * k * n_trees,
                     tmpdir = tempdir(),
                     n_threads = NULL,
                     grain_size = 1,
                     ret_index = FALSE,
                     verbose = FALSE) {
  if (is.null(n_threads)) {
    n_threads <- default_num_threads()
  }
  ann <- annoy_build(X,
    metric = metric, n_trees = n_trees,
    verbose = verbose
  )

  res <- annoy_search(X,
    k = k, ann = ann, search_k = search_k,
    tmpdir = tmpdir,
    n_threads = n_threads,
    prep_data = TRUE,
    grain_size = grain_size, verbose = verbose
  )

  nn_acc <- sum(res$idx == 1:nrow(X)) / nrow(X)
  tsmessage("Annoy recall = ", formatC(nn_acc * 100.0), "%")

  res <- list(idx = res$idx, dist = res$dist, recall = nn_acc)
  if (ret_index) {
    res$index <- ann
  }
  res
}

annoy_create <- function(metric, ndim) {
  rcppannoy <- create_ann(metric, ndim)

  list(
    ann = rcppannoy,
    type = "annoyv1",
    metric = metric,
    ndim = ndim
  )
}

annoy_build <- function(X, metric = "euclidean", n_trees = 50,
                        verbose = FALSE) {
  nr <- nrow(X)
  nc <- ncol(X)

  annoy <- annoy_create(metric, nc)

  if (metric == "correlation") {
    tsmessage("Annoy build: subtracting row means for correlation")
    X <- sweep(X, 1, rowMeans(X))
  }

  tsmessage(
    "Building Annoy index with metric = ", metric,
    ", n_trees = ", n_trees
  )
  ann <- annoy$ann
  nstars <- 50
  if (verbose && nr > nstars) {
    progress_for(
      nr, nstars,
      function(chunk_start, chunk_end) {
        for (i in chunk_start:chunk_end) {
          ann$addItem(i - 1, X[i, , drop = FALSE])
        }
      }
    )
  } else {
    for (i in 1:nr) {
      ann$addItem(i - 1, X[i, ])
    }
  }

  # Build index
  ann$build(n_trees)

  annoy
}

# create RcppAnnoy class from metric name with ndim dimensions
# Correlation uses AnnoyAngular, input data needs to be centered first
create_ann <- function(name, ndim) {
  ann <- switch(name,
    cosine = methods::new(RcppAnnoy::AnnoyAngular, ndim),
    manhattan = methods::new(RcppAnnoy::AnnoyManhattan, ndim),
    euclidean = methods::new(RcppAnnoy::AnnoyEuclidean, ndim),
    hamming = methods::new(RcppAnnoy::AnnoyHamming, ndim),
    correlation = methods::new(RcppAnnoy::AnnoyAngular, ndim),
    stop("BUG: unknown Annoy metric '", name, "'")
  )
}

# fetch the underlying RcppAnnoy class from inside an index
get_rcppannoy <- function(nni) {
  if (startsWith(class(nni), "Rcpp_Annoy")) {
    rcppannoy <- nni
  } else if (nn_is_annoy(nni)) {
    rcppannoy <- nni$ann
  } else if (nn_is_hnsw(nni)) {
    rcppannoy <- nni$ann
  } else {
    stop(
      "BUG: Found an unknown ann implementation of class: '",
      class(nni), "'"
    )
  }
  rcppannoy
}

# Search a pre-built Annoy index for neighbors of X
annoy_search <- function(X, k, ann,
                         search_k = 100 * k,
                         prep_data = FALSE,
                         tmpdir = tempdir(),
                         n_threads = NULL,
                         grain_size = 1,
                         verbose = FALSE) {
  # newer NN structures hide impl in a tagged list
  if (nn_is_annoy(ann)) {
    lann <- ann
    ann <- lann$ann
    if (prep_data && lann$metric == "correlation") {
      tsmessage("Annoy search: subtracting row means for correlation")
      X <- sweep(X, 1, rowMeans(X))
    }
  }

  if (is.null(n_threads)) {
    n_threads <- default_num_threads()
  }
  if (n_threads > 0) {
    annoy_res <- annoy_search_parallel(
      X = X, k = k, ann = ann,
      search_k = search_k,
      tmpdir = tmpdir,
      n_threads = n_threads,
      grain_size = grain_size,
      verbose = verbose
    )
    res <- list(idx = annoy_res$item + 1, dist = annoy_res$distance)
  } else {
    res <- annoy_search_serial(
      X = X, k = k, ann = ann,
      search_k = search_k,
      verbose = verbose
    )
  }
  # Convert from angular distance to the UMAP/sklearn definition of cosine
  # distance
  # Current Annoy README defines cosine distance as sqrt(2 - 2 cos(u,v))
  # where cos(u, v) is the cosine of the angle between two unit-scaled vectors
  # u and v (i.e. the cosine similarity). That expression is known to be
  # equivalent to the euclidean distance between u and v.
  # We shall convert back to 1 - cos(u, v) which is the definition of cosine
  # distance used by UMAP.
  if (methods::is(ann, "Rcpp_AnnoyAngular")) {
    res$dist <- 0.5 * res$dist * res$dist
  }

  res
}

annoy_search_serial <- function(X, k, ann,
                                search_k = 100 * k,
                                verbose = FALSE) {
  tsmessage("Searching Annoy index, search_k = ", search_k)
  nr <- nrow(X)
  idx <- matrix(nrow = nr, ncol = k)
  dist <- matrix(nrow = nr, ncol = k)
  nstars <- 50
  if (verbose && nr > nstars) {
    progress_for(
      nr, nstars,
      function(chunk_start, chunk_end) {
        for (i in chunk_start:chunk_end) {
          res <- ann$getNNsByVectorList(X[i, ], k, search_k, TRUE)
          if (length(res$item) != k) {
            stop(
              "search_k/n_trees settings were unable to find ", k,
              " neighbors for item ", i
            )
          }
          idx[i, ] <<- res$item
          dist[i, ] <<- res$distance
        }
      }
    )
  } else {
    for (i in 1:nr) {
      res <- ann$getNNsByVectorList(X[i, ], k, search_k, TRUE)
      if (length(res$item) != k) {
        stop(
          "search_k/n_trees settings were unable to find ", k,
          " neighbors for item ", i
        )
      }
      idx[i, ] <- res$item
      dist[i, ] <- res$distance
    }
  }
  list(idx = idx + 1, dist = dist)
}

annoy_search_parallel <- function(X, k, ann,
                                  search_k = 100 * k,
                                  tmpdir = tempdir(),
                                  n_threads = NULL,
                                  grain_size = 1,
                                  verbose = FALSE) {
  if (is.null(n_threads)) {
    n_threads <- default_num_threads()
  }
  index_file <- tempfile(tmpdir = tmpdir)
  tsmessage("Writing NN index file to temp file ", index_file)
  ann$save(index_file)
  fsize <- file.size(index_file)
  tsmessage(
    "Searching Annoy index using ", pluralize("thread", n_threads),
    ", search_k = ", search_k
  )

  ann_class <- class(ann)
  metric <- switch(ann_class,
    Rcpp_AnnoyAngular = "cosine",
    Rcpp_AnnoyManhattan = "manhattan",
    Rcpp_AnnoyEuclidean = "euclidean",
    Rcpp_AnnoyHamming = "hamming",
    stop("BUG: unknown Annoy class '", ann_class, "'")
  )

  res <- annoy_search_parallel_cpp(index_file,
    X,
    k, search_k,
    metric = metric,
    n_threads = n_threads,
    grain_size = grain_size
  )
  unlink(index_file)
  if (any(res$item == -1)) {
    msg <- paste0(
      "search_k/n_trees settings were unable to find ", k,
      " neighbors for all items."
    )
    if (fsize > 2147483647) {
      msg <- paste0(
        msg, " Index file may have been too large to process.",
        " Try repeating with n_threads = 0, reducing n_trees,",
        " or reducing to a smaller dimensionality, e.g. pca = 50"
      )
    }
    stop(msg)
  }

  res
}

FNN_nn <- function(X, k = 10, include_self = TRUE) {
  if (include_self) {
    k <- k - 1
  }

  fnn <- FNN::get.knn(X, k)
  idx <- fnn$nn.index
  dist <- fnn$nn.dist

  if (include_self) {
    idx <- cbind(seq_len(nrow(X)), idx)
    dist <- cbind(rep(0, nrow(X)), dist)
  }

  list(idx = idx, dist = dist)
}

dist_nn <- function(X, k, include_self = TRUE, verbose = FALSE) {
  tsmessage("Finding nearest neighbors from distance matrix")
  X <- as.matrix(X)

  if (!include_self) {
    k <- k + 1
  }

  nn_idx <- t(apply(X, 2, order))[, 1:k]
  nn_dist <- matrix(0, nrow = nrow(X), ncol = k)
  for (i in seq_len(nrow(nn_idx))) {
    nn_dist[i, ] <- X[i, nn_idx[i, ]]
  }

  if (!include_self) {
    nn_idx <- nn_idx[, 2:ncol(nn_idx)]
    nn_dist <- nn_dist[, 2:ncol(nn_dist)]
  }

  attr(nn_idx, "dimnames") <- NULL
  attr(nn_dist, "dimnames") <- NULL

  list(idx = nn_idx, dist = nn_dist)
}

sparse_nn <- function(X, k, include_self = TRUE, verbose = FALSE) {
  tsmessage("Finding nearest neighbors from sparse matrix")

  if (include_self) {
    k <- k - 1
  }

  n <- nrow(X)
  nn_idx <- matrix(0, nrow = n, ncol = k)
  nn_dist <- matrix(0, nrow = n, ncol = k)

  for (i in 1:n) {
    dists <- X[, i]
    is_nonzero <- dists != 0
    dist_nonzero <- dists[is_nonzero]
    if (length(dist_nonzero) < k) {
      stop(
        "Row ", i, " of distance matrix has only ", length(dist_nonzero),
        " defined distances"
      )
    }

    k_order <- order(dist_nonzero)[1:k]

    idx_nonzero <- which(is_nonzero, arr.ind = TRUE)

    nn_idx[i, ] <- idx_nonzero[k_order]
    nn_dist[i, ] <- dist_nonzero[k_order]
  }

  if (include_self) {
    nn_idx <- cbind(1:n, nn_idx)
    nn_dist <- cbind(rep(0, n), nn_dist)
  }

  list(idx = nn_idx, dist = nn_dist)
}

# Extract knn data from sparse lower/upper triangular matrix
sparse_tri_nn <- function(X, k, include_self = TRUE, verbose = FALSE) {
  tsmessage("Finding nearest neighbors from sparse triangular matrix")
  if (include_self) {
    k <- k - 1
  }

  n <- nrow(X)
  nn_idx <- matrix(0, nrow = n, ncol = k)
  nn_dist <- matrix(0, nrow = n, ncol = k)

  # this will get the i,j,x values no matter the internal representation
  Xsumm <- summary(X)

  for (i in 1:n) {
    # get indices where $i/j == i
    idxji <- Xsumm$j == i
    idxii <- Xsumm$i == i

    idxi <- idxji | idxii

    # find non-zero distances
    dists <- Xsumm$x[idxi]
    is_nonzero <- dists != 0
    dist_nonzero <- dists[is_nonzero]
    if (length(dist_nonzero) < k) {
      stop(
        "Row ", i, " of distance matrix has only ", length(dist_nonzero),
        " defined distances"
      )
    }

    # find indices of k-smallest distances
    k_order <- order(dist_nonzero)[1:k]
    nn_dist[i, ] <- dist_nonzero[k_order]

    # get indices into original vector
    isk <- which(idxi)[k_order]
    Xis <- Xsumm$i[isk]
    Xjs <- Xsumm$j[isk]
    # We don't know if the non-i index is in the i or j column
    # so do this slightly horrible logical * integer arithmetic
    # which will add the correct index to 0
    nn_idx[i, ] <- ((Xis != i) * Xis) + ((Xjs != i) * Xjs)
  }

  if (include_self) {
    nn_idx <- cbind(1:n, nn_idx)
    nn_dist <- cbind(rep(0, n), nn_dist)
  }

  list(idx = nn_idx, dist = nn_dist)
}

is_binary_metric <- function(metric) {
  metric %in% c(
    "dice",
    "hamming",
    "jaccard",
    "kulsinski",
    "matching",
    "rogerstanimoto",
    "russellrao",
    "sokalmichener",
    "sokalsneath",
    "yule"
  )
}

Try the uwot package in your browser

Any scripts or data that you put into this service are public.

uwot documentation built on June 22, 2024, 6:58 p.m.