Nothing
## test the stability of cca object and its support functions
suppressPackageStartupMessages(require(vegan))
suppressPackageStartupMessages(require(parallel))
set.seed(4711)
op <- options(digits=5)
## models
data(dune, dune.env)
mcca <- cca(dune ~ Condition(Management) + Manure + A1, dune.env)
mrda <- rda(dune ~ Condition(Management) + Manure + A1, dune.env)
mrda1 <- rda(dune ~ Condition(Management) + Manure + A1, dune.env, scale=TRUE)
mcap <- capscale(dune ~ Condition(Management) + Manure + A1, dune.env,
dist = "bray")
mdb <- dbrda(dune ~ Condition(Management) + Manure + A1, dune.env,
dist = "bray")
mancap <- capscale(dune ~ Condition(Management) + Manure + A1, dune.env,
dist = "manhattan")
mandb <- dbrda(dune ~ Condition(Management) + Manure + A1, dune.env,
dist = "manhattan")
## 0-rank constraints
m0cca <- cca(dune ~ Condition(Management) + Management, dune.env)
## univariate model, rank-1 constraint
H <- diversity(dune)
m1rda <- rda(H ~ A1, dune.env)
## general appearance
mcca
mrda
mcap
mdb
mancap
mandb
m0cca
m1rda
## names
sort(names(mcca))
sort(names(mrda))
sort(names(mcap))
sort(names(mdb))
## diagnostics
hatvalues(mcca)
hatvalues(mrda)
hatvalues(mandb)
hatvalues(m1rda)
zapsmall(head(cooks.distance(mcca)))
zapsmall(head(cooks.distance(mrda)))
zapsmall(head(cooks.distance(mrda1)))
zapsmall(head(cooks.distance(mcap, "canoco")))
zapsmall(head(cooks.distance(mdb, "canoco")))
zapsmall(head(cooks.distance(mancap, "canoco")))
zapsmall(head(cooks.distance(mandb, "canoco")))
zapsmall(head(cooks.distance(m1rda)))
head(goodness(mcca, display = "sites"))
head(goodness(mrda, display = "sites"))
head(goodness(mrda1, display = "sites"))
head(goodness(m1rda, display = "sites"))
goodness(m1rda) # fails in 2.5-3
## head(goodness(mcap, display = "sites")) # currently disabled
## head(goodness(mdb, display="sites")) # not implemented for partial dbrda
## head(goodness(mancap, display="sites")) # currently disabled
## head(goodness(mandb, display="sites")) # not implemneted for partial dbrda
head(goodness(m0cca))
head(inertcomp(mcca))
head(inertcomp(mrda))
head(inertcomp(mrda1))
head(inertcomp(mcap, display="sites"))
head(inertcomp(mdb, display = "sites"))
head(inertcomp(mancap, display = "sites"))
head(inertcomp(mandb, display = "sites"))
zapsmall(head(inertcomp(m0cca)))
inertcomp(m1rda)
abs(zapsmall(intersetcor(mcca)))
abs(zapsmall(intersetcor(mrda)))
abs(zapsmall(intersetcor(mrda1)))
abs(zapsmall(intersetcor(mcap)))
abs(zapsmall(intersetcor(mdb)))
abs(zapsmall(intersetcor(mancap)))
abs(zapsmall(intersetcor(mandb)))
abs(zapsmall(intersetcor(m1rda)))
tolerance(mcca)
tolerance(m0cca)
vif.cca(mcca)
vif.cca(mrda)
vif.cca(mcap)
vif.cca(mdb)
alias(mcca)
alias(mrda)
alias(mcap)
alias(mdb)
## basic statistic
abs(coef(mcca))
abs(coef(mrda))
abs(coef(mrda1))
abs(coef(mcap))
abs(coef(mdb))
abs(coef(m1rda))
eigenvals(mcca)
eigenvals(mrda)
eigenvals(mrda1)
eigenvals(mcap)
eigenvals(mdb)
eigenvals(mancap)
eigenvals(mandb)
eigenvals(m0cca)
eigenvals(m0cca, model = "constrained")
eigenvals(m1rda)
nobs(mcca)
nobs(mrda)
nobs(mcap)
nobs(mdb)
nobs(m0cca)
nobs(m1rda)
RsquareAdj(mcca)
RsquareAdj(mrda)
RsquareAdj(mrda1)
RsquareAdj(mcap)
RsquareAdj(mdb)
RsquareAdj(m1rda)
head(model.frame(mcca))
head(model.frame(mrda))
head(model.frame(mrda1))
head(model.frame(mcap))
head(model.frame(mdb))
head(model.frame(m0cca))
head(model.frame(m1rda))
## testing and model building -
deviance(mcca)
deviance(mrda)
deviance(mrda1)
deviance(mcap)
deviance(mdb)
deviance(m0cca)
deviance(m1rda)
per <- shuffleSet(nrow(dune), 49)
permutest(mcca, per)
permutest(mrda, per)
permutest(mrda1, per)
permutest(mcap, per)
permutest(mdb, per)
permutest(mancap, per)
permutest(mandb, per)
permutest(m1rda, per)
drop1(mcca, test = "permutation", permutations = per)
drop1(mrda, test = "permutation", permutations = per)
drop1(mrda1, test = "permutation", permutations = per)
drop1(mcap, test = "permutation", permutations = per)
drop1(mdb, test = "permutation", permutations = per)
drop1(m1rda, test = "permutation", permutations = per)
anova(mcca, permutations = per)
anova(mrda, permutations = per)
anova(mrda1, permutations = per)
anova(mcap, permutations = per)
anova(mdb, permutations = per)
anova(mancap, permutations = per)
anova(mandb, permutations = per)
anova(m0cca, permutations = per)
anova(mcca, permutations = per, by="term")
anova(mrda, permutations = per, by="term")
anova(mrda1, permutations = per, by="term")
anova(mcap, permutations = per, by="term")
anova(mdb, permutations = per, by="term")
anova(mancap, permutations = per, by="term")
anova(mandb, permutations = per, by="term")
anova(m1rda, permutations = per, by="term")
anova(mcca, permutations = per, by="margin")
anova(mrda, permutations = per, by="margin")
anova(mrda1, permutations = per, by="margin")
anova(mcap, permutations = per, by="margin")
anova(mdb, permutations = per, by="margin")
anova(mancap, permutations = per, by="margin")
anova(mandb, permutations = per, by="margin")
anova(m1rda, permutations = per, by="margin")
anova(mcca, permutations = per, by="axis")
anova(mrda, permutations = per, by="axis")
anova(mrda1, permutations = per, by="axis")
anova(mcap, permutations = per, by="axis")
anova(mdb, permutations = per, by="axis")
anova(mancap, permutations = per, by="axis")
anova(mandb, permutations = per, by="axis")
anova(m1rda, permutations = per, by="axis")
## permutation tests in parallel
clust <- makeCluster(2) # socket cluster: the only one that works in Windows
permutest(mcca, per, parallel = clust) # use socket cluster
permutest(mrda, per, parallel = clust) # use socket cluster
permutest(mrda1, per, parallel = clust) # use socket cluster
permutest(mcap, per, parallel = clust) # use socket cluster
permutest(mdb, per, parallel = clust) # use socket cluster
permutest(mancap, per, parallel = clust) # use socket cluster
permutest(mandb, per, parallel = clust) # use socket cluster
permutest(m1rda, per, parallel = clust) # use socket cluster
drop1(mcca, test = "permutation", permutations = per, parallel = clust)
drop1(mrda, test = "permutation", permutations = per, parallel = clust)
drop1(mrda1, test = "permutation", permutations = per, parallel = clust)
drop1(mcap, test = "permutation", permutations = per, parallel = clust)
drop1(mdb, test = "permutation", permutations = per, parallel = clust)
drop1(m1rda, test = "permutation", permutations = per, parallel = clust)
anova(mcca, permutations = per, parallel = clust)
anova(mrda, permutations = per, parallel = clust)
anova(mrda1, permutations = per, parallel = clust)
anova(mcap, permutations = per, parallel = clust)
anova(mdb, permutations = per, parallel = clust)
anova(mancap, permutations = per, parallel = clust)
anova(mandb, permutations = per, parallel = clust)
anova(m0cca, permutations = per, parallel = clust)
anova(mcca, permutations = per, by = "term", parallel = clust)
anova(mrda, permutations = per, by = "term", parallel = clust)
anova(mrda1, permutations = per, by = "term", parallel = clust)
anova(mcap, permutations = per, by = "term", parallel = clust)
anova(mdb, permutations = per, by = "term", parallel = clust)
anova(mancap, permutations = per, by = "term", parallel = clust)
anova(mandb, permutations = per, by = "term", parallel = clust)
anova(m1rda, permutations = per, by = "term", parallel = clust)
anova(mcca, permutations = per, by = "margin", parallel = clust)
anova(mrda, permutations = per, by = "margin", parallel = clust)
anova(mrda1, permutations = per, by = "margin", parallel = clust)
anova(mcap, permutations = per, by = "margin", parallel = clust)
anova(mdb, permutations = per, by = "margin", parallel = clust)
anova(mancap, permutations = per, by = "margin", parallel = clust)
anova(mandb, permutations = per, by = "margin", parallel = clust)
anova(m1rda, permutations = per, by = "margin", parallel = clust)
anova(mcca, permutations = per, by = "axis", parallel = clust)
anova(mrda, permutations = per, by = "axis", parallel = clust)
anova(mrda1, permutations = per, by = "axis", parallel = clust)
anova(mcap, permutations = per, by = "axis", parallel = clust)
anova(mdb, permutations = per, by = "axis", parallel = clust)
anova(mancap, permutations = per, by = "axis", parallel = clust)
anova(mandb, permutations = per, by = "axis", parallel = clust)
anova(m1rda, permutations = per, by = "axis", parallel = clust)
# stop the cluster as we are finished
stopCluster(clust)
## the following do not all work with partial models
mcca <- cca(dune ~ Management + Manure + A1, dune.env)
mrda <- rda(dune ~ Management + Manure + A1, dune.env)
mrda1 <- rda(dune ~ Management + Manure + A1, dune.env, scale = TRUE)
mcap <- capscale(dune ~ Management + Manure + A1, dune.env, dist = "bray")
mdb <- dbrda(dune ~ Management + Manure + A1, dune.env, dist = "bray")
mancap <- capscale(dune ~ Management + Manure + A1, dune.env, dist = "man")
mandb <- dbrda(dune ~ Management + Manure + A1, dune.env, dist = "man")
head(calibrate(mcca))
head(calibrate(mrda))
head(calibrate(mrda1))
head(calibrate(mcap))
head(calibrate(mdb))
head(calibrate(mancap))
head(calibrate(mandb))
head(calibrate(mcca, newdata=dune[11:15,]))
head(calibrate(mrda, newdata=dune[11:15,]))
head(calibrate(mrda1, newdata=dune[11:15,]))
## head(calibrate(m1rda, newdata=dune[11:15,]))## fails
head(predict(mcca, newdata = dune.env))
predict(mrda, newdata = dune.env[1:4,])
predict(mrda1, newdata = dune.env[1:4,])
predict(mcap, newdata = dune.env[1:4,])
predict(mdb, newdata = dune.env[1:4,])
predict(mancap, newdata = dune.env[1:4,])
predict(mandb, newdata = dune.env[1:4,])
predict(m1rda, newdata = dune.env[1:4,])
## the sign is arbitrary
abs(predict(mcca, newdata = dune[1:4,], type="wa"))
abs(predict(mrda, newdata = dune[1:4,], type="wa"))
abs(predict(mrda1, newdata = dune[1:4,], type="wa"))
## the sign is arbitrary
abs(predict(mcca, newdata = dune[,1:4], type="sp"))
abs(predict(mrda, newdata = dune[,1:4], type="sp"))
abs(predict(mrda1, newdata = dune[,1:4], type="sp"))
abs(predict(mcca, newdata = dune.env[1:4,], type="lc"))
abs(predict(mrda, newdata = dune.env[1:4,], type="lc"))
abs(predict(mrda1, newdata = dune.env[1:4,], type="lc"))
abs(predict(mcap, newdata = dune.env[1:4,], type="lc"))
abs(predict(mdb, newdata = dune.env[1:4,], type="lc"))
abs(predict(mancap, newdata = dune.env[1:4,], type="lc"))
abs(predict(m1rda, newdata = dune.env[1:4,], type="lc"))
abs(predict(mandb, newdata = dune.env[1:4,]))
## reset
options(op)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.