Nothing
#' The application server-side Practical 5
#'
#' @param input,output,session Internal parameters for {shiny}.
#' DO NOT REMOVE.
#' @import ggplot2 dplyr tibble tidyr
#' @importFrom extraDistr dbbinom
#' @importFrom stats dbeta qbeta rbeta setNames dbinom density
#' @importFrom rlang .data
#' @importFrom magrittr %>%
#' @noRd
# Load data
data <- data.frame(MMs = c(20, 22, 24), red = c(5, 8, 9))
values <- reactiveValues(theta_sim = NA, ww = NA, density = NA, LL = NA,
UL = NA)
# Add colours
#cols <- rbind(cols, c("IS posterior", "black", "#000000"))
cols2IS <- cols
cols2IS[4, ] <- c("posterior_IS", "firebrick1", "#FF3030")
p5IS_server <- function(input, output, session) {
# Run simulations
IS <- reactive({
#print("---- IS ----")
n_simulations <- input$nsim
param1 <- input$sampa0
param2 <- input$sampb0
# FIXME: Handle sampling distribution
values$theta_sim <- rbeta(n_simulations, param1, param2)
# Log-Likelihood (for each value of theta_sim)
loglik_binom <- sapply(values$theta_sim, function(THETA) {
sum(dbinom(data$red, data$MMs, THETA, log = TRUE))
})
# Weights
log_ww <- loglik_binom + dbeta(values$theta_sim, input$a0, input$b0, log = TRUE) - dbeta(values$theta_sim, param1, param2, log = TRUE)
log_ww <- log_ww - max(log_ww)
ww <- exp(log_ww)
values$ww <- ww / sum(ww)
# 95% approximate credible interval
idx <- order(values$theta_sim)
# Empirical cumulative
theta_sim_ordered <- values$theta_sim[idx]
aux <- cumsum(values$ww[idx])
values$LL <- theta_sim_ordered[which.min(abs(aux - 0.025))]
values$UL <- theta_sim_ordered[which.min(abs(aux - 0.975))]
# Density
values$density <- density(values$theta_sim, weights = values$ww)
})
# For debugging
# input <- list(a0 = .01, b0 = .01, r = 4)
# input <- list(a0 = 0, b0 = 0, r = 20)
plot_style <- list(
# labs(x = expression(theta), y = NULL, color = NULL),
scale_color_manual(
values = setNames(cols2IS$name, cols2IS$target)
),
theme_minimal(),
theme(
axis.text.y = element_blank(),
panel.grid.major.y = element_blank(),
panel.grid.minor.y = element_blank()
)
)
dist_summaries <- reactive({
IS()
tibble(
"-" = c("Prior", "Posterior", "Posterior (IS)")
,
Mean = c(
mean_beta(input$a0, input$b0),
mean_beta(input$a0 + sum(data$red), input$b0 + sum(data$MMs - data$red)),
sum(values$theta_sim * values$ww)
) %>%
round(2)
,
SD = c(
sd_beta(input$a0, input$b0),
sd_beta(input$a0 + sum(data$red), input$b0 + sum(data$MMs - data$red)),
sqrt(sum(values$theta_sim^2 * values$ww) - sum(values$theta_sim * values$ww)^2)
) %>%
round(2)
,
Q_025 = qbeta(
0.025, input$a0 + c(0), input$b0 + c(0)
) %>%
round(2) %>%
c(
ifelse(
input$b0 + sum(data$MMs - data$red) > 0,
qbbinom(.025, n = sum(data$MMs), input$a0 + sum(data$red), input$b0 + sum(data$MMs - data$red)) / sum(data$MMs),
sum(data$MMs) / sum(data$MMs)
)
) %>%
c(values$LL)
,
Q_975 = qbeta(
0.975, input$a0 + c(0), input$b0 + c(0)
) %>%
round(2) %>%
c(
ifelse(
input$b0 + sum(data$MMs - data$red) > 0,
qbbinom(.975, n = sum(data$MMs), input$a0 + sum(data$red), input$b0 + sum(data$MMs - data$red)) / sum(data$MMs),
sum(data$MMs) / sum(data$MMs)
) %>%
c(values$UL)
),
ESS = c(NA, NA, sum(values$ww)^2 / sum(values$ww^2))
)
})
output$inference <- renderPlot(
data.frame(x = values$density$x) %>%
mutate(
prior = dbeta(.data$x, input$a0, input$b0),
likelihood = dbeta(.data$x, 1 + sum(data$red), 1 + sum(data$MMs - data$red)),
posterior = dbeta(.data$x, input$a0 + sum(data$red), input$b0 + sum(data$MMs - data$red)),
posterior_IS = values$density$y
) %>%
pivot_longer(
cols = -.data$x,
names_to = "curve",
values_to = "y"
) %>%
ggplot(aes(.data$x, .data$y)) +
geom_area(
## 95 % CrI prior
data = ~ .x %>%
filter(
.data$curve == "prior",
between(
x,
qbeta(0.025, input$a0, input$b0),
qbeta(0.975, input$a0, input$b0)
)
),
fill = "dodgerblue",
alpha = .2
) +
geom_area(
## 95 % CrI posterior
data = ~ .x %>%
filter(
curve == "posterior",
between(
.data$x,
qbeta(0.025, input$a0 + sum(data$red), input$b0 + sum(data$MMs - data$red)),
qbeta(0.975, input$a0 + sum(data$red), input$b0 + sum(data$MMs - data$red))
)
),
fill = "darkgreen",
alpha = .2
) +
geom_vline(
data = dist_summaries() %>%
mutate(curve = tolower(`-`)) %>%
filter(.data$curve != "predictive"),
aes(xintercept = .data$Mean, colour = .data$curve),
lwd = 1,
alpha = .2,
show.legend = FALSE
) +
geom_line(aes(colour = .data$curve)) +
plot_style +
labs(x = expression(theta), y = NULL, color = NULL) #+
# Density plot from IS
#geom_line(data = data.frame(x = values$density$x, y = values$density$y),
# aes(x = x, y = y), colour = "purple")
)
output$weights <- renderPlot(
qplot(values$ww, geom = "histogram", bins = 40) + xlab("Weight") +
ggtitle("Importance sampling weights")
)
output$dist_summaries <- renderTable({dist_summaries()})
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.