View source: R/compute_dispro.R
| compute_dispro | R Documentation | 
 Computes
bivariate (reporting) Odds-Ratio and Information Component for a drug-adr pair.
compute_dispro(
  .data,
  y,
  x,
  alpha = 0.05,
  na_format = "-",
  dig = 2,
  export_raw_values = FALSE,
  min_n_obs = 0
)
.data | 
 The data.table to compute from.  | 
y | 
 A character vector, one or more variable to explain (usually an adr).  | 
x | 
 A character vector, one or more explaining variable (usually a drug).  | 
alpha | 
 Alpha risk.  | 
na_format | 
 Character string to fill NA values in ror and ci legends.  | 
dig | 
 Number of digits for rounding (this argument is passed to   | 
export_raw_values | 
 A logical. Should the raw values be exported?  | 
min_n_obs | 
 A numeric, compute disproportionality only for pairs
with at least   | 
Significance in pharmacovigilance
analysis is only defined if the lower bound of the confidence/credibility
interval is above 1 (i.e. low_ci > 1, or ic_tail > 0).
Actually, the function computes an Odds-Ratio,
which is not necessarily a reporting Odds-Ratio.
A data.table, with ROR, IC, and their
confidence/credibility interval (at 1 - alpha).
Significance of both (as signif_or and signif_ic, if export_raw_values is TRUE).
A data.table with columns
y and x, same as input
n_obs the number of observed cases
n_exp the number of expected cases
orl the formatted Odds-Ratio
or_ci the formatted confidence interval
ic the Information Component
ic_tail the tail probability of the IC
ci_level the confidence interval level
 Additional columns, if export_raw_values is TRUE:
a, b, c, d the counts in the contingency table
std_er the standard error of the log(OR)
or the Odds-Ratio
low_ci the lower bound of the confidence interval
up_ci the upper bound of the confidence interval
signif_or the significance of the Odds-Ratio
signif_ic the significance of the Information Component
compute_or_mod(), add_drug(), add_adr()
# Say you want to perform a disproportionality analysis between colitis and
# nivolumab among ICI cases
demo <-
  demo_ |>
  add_drug(
    d_code = ex_$d_drecno,
    drug_data = drug_
  ) |>
  add_adr(
    a_code = ex_$a_llt,
    adr_data = adr_
  )
demo |>
  compute_dispro(
    y = "a_colitis",
    x = "nivolumab"
  )
# You don't have to use the pipe syntax, if you're not familiar
compute_dispro(
    .data = demo,
    y = "a_colitis",
    x = "nivolumab"
  )
# Say you want to compute more than one univariate ror at a time.
many_drugs <-
  names(ex_$d_drecno)
demo |>
  compute_dispro(
    y = "a_colitis",
    x = many_drugs
  )
# could do the same with adrs
many_adrs <-
  names(ex_$a_llt)
demo |>
compute_dispro(
  y = many_adrs,
  x = many_drugs
)
# Export raw values if you want to built plots, or other tables.
demo |>
  compute_dispro(
    y = "a_colitis",
    x = "nivolumab",
    export_raw_values = TRUE
  )
# Set a minimum number of observed cases to compute disproportionality
demo |>
 compute_dispro(
 y = "a_colitis",
 x = "nivolumab",
 min_n_obs = 5
 )
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.