View source: R/compute_dispro.R
compute_dispro | R Documentation |
Computes
bivariate (reporting) Odds-Ratio and Information Component for a drug-adr pair.
compute_dispro(
.data,
y,
x,
alpha = 0.05,
na_format = "-",
dig = 2,
export_raw_values = FALSE,
min_n_obs = 0
)
.data |
The data.table to compute from. |
y |
A character vector, one or more variable to explain (usually an adr). |
x |
A character vector, one or more explaining variable (usually a drug). |
alpha |
Alpha risk. |
na_format |
Character string to fill NA values in ror and ci legends. |
dig |
Number of digits for rounding (this argument is passed to |
export_raw_values |
A logical. Should the raw values be exported? |
min_n_obs |
A numeric, compute disproportionality only for pairs
with at least |
Significance in pharmacovigilance
analysis is only defined if the lower bound of the confidence/credibility
interval is above 1 (i.e. low_ci > 1
, or ic_tail > 0
).
Actually, the function computes an Odds-Ratio,
which is not necessarily a reporting Odds-Ratio.
A data.table, with ROR, IC, and their
confidence/credibility interval (at 1 - alpha
).
Significance of both (as signif_or
and signif_ic
, if export_raw_values
is TRUE).
A data.table with columns
y
and x
, same as input
n_obs
the number of observed cases
n_exp
the number of expected cases
orl
the formatted Odds-Ratio
or_ci
the formatted confidence interval
ic
the Information Component
ic_tail
the tail probability of the IC
ci_level
the confidence interval level
Additional columns, if export_raw_values
is TRUE
:
a
, b
, c
, d
the counts in the contingency table
std_er
the standard error of the log(OR)
or
the Odds-Ratio
low_ci
the lower bound of the confidence interval
up_ci
the upper bound of the confidence interval
signif_or
the significance of the Odds-Ratio
signif_ic
the significance of the Information Component
compute_or_mod()
, add_drug()
, add_adr()
# Say you want to perform a disproportionality analysis between colitis and
# nivolumab among ICI cases
demo <-
demo_ |>
add_drug(
d_code = ex_$d_drecno,
drug_data = drug_
) |>
add_adr(
a_code = ex_$a_llt,
adr_data = adr_
)
demo |>
compute_dispro(
y = "a_colitis",
x = "nivolumab"
)
# You don't have to use the pipe syntax, if you're not familiar
compute_dispro(
.data = demo,
y = "a_colitis",
x = "nivolumab"
)
# Say you want to compute more than one univariate ror at a time.
many_drugs <-
names(ex_$d_drecno)
demo |>
compute_dispro(
y = "a_colitis",
x = many_drugs
)
# could do the same with adrs
many_adrs <-
names(ex_$a_llt)
demo |>
compute_dispro(
y = many_adrs,
x = many_drugs
)
# Export raw values if you want to built plots, or other tables.
demo |>
compute_dispro(
y = "a_colitis",
x = "nivolumab",
export_raw_values = TRUE
)
# Set a minimum number of observed cases to compute disproportionality
demo |>
compute_dispro(
y = "a_colitis",
x = "nivolumab",
min_n_obs = 5
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.