Nothing
######################
### Plots for Book ###
######################
### Packages
library(voi)
library(ggplot2)
library(dplyr)
library(R2jags)
## Run the model
source("04_analysis/02_baseline_model_output.R")
source("06_figs/01_plotting_functions.R")
## Baseline Cost-Effectiveness Formatting
# The output from the cost-effectiveness model should be formatted for
# the voi package.
# Use BCEA package to create a cost-effectiveness object.
chemotherapy_output <- list(e = m_costs_effects[, "Effects", ],
c = m_costs_effects[, "Costs", ],
k = seq(0, 50000, length.out = 501))
# Using a bespoke analysis function - trial only updates odds ratio.
# Data generation function
OR_datagen_fn <- function(inputs, n = 500){
p_side_effects_t1 <- inputs[, "p_side_effects_t1"]
logor_side_effects <- inputs[, "logor_side_effects"]
# Odds for side effects for treatment 1
odds_side_effects_t1 <- p_side_effects_t1 / (1 - p_side_effects_t1)
# Odds for side effects on treatment 2
odds_side_effects_t2 <- odds_side_effects_t1 * exp(logor_side_effects)
# Probability of side effects under treatment 2
p_side_effects_t2 <- odds_side_effects_t2 / (1 + odds_side_effects_t2)
# Data generation
X1 <- rbinom(length(p_side_effects_t1), n, p_side_effects_t1)
X2 <- rbinom(length(p_side_effects_t2), n, p_side_effects_t2)
data_save <- data.frame(X1 = X1, X2 = X2)
return(data_save)
}
# Analysis function based on JAGS
OR_analysis_fn <- function(data, args, pars){
X1 <- data$X1
X2 <- data$X2
data_jags <- list(X1 = X1,
X2 = X2,
n = args$n,
n_side_effects = args$n_side_effects,
n_patients = args$n_patients,
logor_side_effects_mu = args$logor_side_effects_mu,
logor_side_effects_sd = args$logor_side_effects_sd)
LogOR_trial <- function(){
# Probability of side effects under treatment 1
p_side_effects_t1 ~ dbeta(1 + n_side_effects,
1 + n_patients - n_side_effects)
# Log odds of side effects on treatment 2
logor_side_effects ~ dnorm(logor_side_effects_mu, logor_side_effects_sd)
# Odds of side effects on treatment 1
odds_side_effects_t1 <- p_side_effects_t1 / (1 - p_side_effects_t1)
# Odds for side effects on treatment 2
odds_side_effects_t2 <- odds_side_effects_t1 * exp(logor_side_effects)
# Probability of side effects under treatment 2
p_side_effects_t2 <- odds_side_effects_t2 / (1 + odds_side_effects_t2)
X1 ~ dbin(p_side_effects_t1, n)
X2 ~ dbin(p_side_effects_t2, n)
}
filein <- file.path(tempdir(),fileext="datmodel.txt")
R2OpenBUGS::write.model(LogOR_trial,filein)
# Perform the MCMC simulation with OpenBUGS.
# Close OpenBUGS once it has finished (if debug is set to TRUE)
bugs.data <- jags(
data = data_jags,
parameters.to.save = pars,
model.file = filein,
n.chains = 1,
n.iter = args$n.iter,
n.thin = 1,
n.burnin = 250, progress.bar = "none")
return(data.frame(logor_side_effects = bugs.data$BUGSoutput$sims.matrix[, pars[1]]))
}
# EVSI calculation using the momemt matching method.
evsi_OR <- evsi(outputs = chemotherapy_output,
inputs = m_params,
pars = c("logor_side_effects"),
pars_datagen = c("p_side_effects_t1", "logor_side_effects"),
n = seq(50, 1500, by = 50),
method = "mm",
datagen_fn = OR_datagen_fn,
model_fn = calculate_costs_effects,
analysis_args = list(n_side_effects = n_side_effects,
n_patients = n_patients,
n = 500,
logor_side_effects_mu = logor_side_effects_mu,
logor_side_effects_sd = logor_side_effects_sd,
n.iter = 5250),
analysis_fn = OR_analysis_fn,
par_fn = generate_psa_parameters)
saveRDS(evsi_OR, "evsi_OR.rds")
evsi_OR <- readRDS("evsi_OR.rds")
### Format for plotting
### Whats this do? returns list: dataframe with evsi SS by wtp
## and EVPPI . n=Inf? no. need special colour
## ggplot alternative
## TODO evppi better returned as a data frame not a vector
## TODO add custom legend: to show EVPI and EVPPI
evpi_df <- evpi(outputs = chemotherapy_output)
evppi_df <- data.frame(k=unique(evsi_OR$k), evppi=attr(evsi_OR,"evppi"))
ggplot(evsi_OR, aes(x=k, y=evsi, group=n, color=n)) +
geom_line() +
scale_colour_gradient(low="skyblue", high="darkblue") +
xlab("Willingness to pay") + ylab("EVSI") +
geom_line(data=evpi_df, aes(x=k, y=evpi),
color="black", lwd=1.5, inherit.aes = FALSE) +
geom_line(data=evppi_df, aes(x=k, y=evppi),
color="darkblue", lwd=1.5, inherit.aes = FALSE) +
labs(color="Sample size")
## Just show specific sample sizes
## TODO remove legend, make discrete scale
evsi_OR %>%
filter(n == 250) %>%
ggplot(aes(x=k, y=evsi, group=n, color=n)) +
geom_line() +
scale_colour_gradient(low="skyblue", high="darkblue") +
xlab("Willingness to pay") + ylab("EVSI") +
geom_line(data=evppi_df, aes(x=k, y=evppi),
color="black", lwd=1.5, inherit.aes = FALSE)
plotting_1 <- evsi.plot.adapt(chemotherapy_output,
m_params,
c("logor_side_effects"),
chemo_evsi_or, "gam")
## Base graphics solution
plotting_1 <- evsi.plot.adapt(chemotherapy_output,
m_params,
c("logor_side_effects"),
evsi_OR, "gam")
pdf("06_figs/EVSIwtpN.pdf")
evsi.wtp.plot(plotting_1)
dev.off()
pdf("06_figs/EVSIwtp.pdf")
evsi.wtp.plot(plotting_1, N = 250)
dev.off()
### SS PLOTS WHAT ARE THESE . WHICH K? looks intended
## to give a single one, but why not multiple, by colour?
## TODO demonstrate both. It has EVPPI too as horiz line (not evpi)
pdf("06_figs/EVSIbyN.pdf")
evsi.ss.plot(plotting_1)
dev.off()
### ENBS PLOTS
## Quantiles of ENBS by SS. quantiles as lines.
## Nicer with colour than line types
### cant'tell what enbs=0 is
pdf("06_figs/ENBS.pdf")
evsi.enbs.plot(plotting_1,
c(5e6, 1e7), # min and max setup costs of trial
c(28000,42000), # min and max pp costs
k = 20000, Pop = 46000, Time = 10)
dev.off()
optim.ss(plotting_1, mean(c(5e6, 1e7)), mean(c(28000,42000)),
k = 20000, Pop = 46000, Time = 10)
pdf("06_figs/coss.pdf")
coss(plotting_1, c(5e6, 1e7), c(28000,42000), Pop = 46000, Time = 5)
dev.off()
pdf("06_figs/ENBS-pop.pdf")
evsi.prob.plot(plotting_1, setup = c(5e6, 1e7), pp = c(28000,42000), k = 20000,
N = 398, Pop = c(0,60000), Time = c(0,10))
dev.off()
## Side Effects
# Using a bespoke analysis function - trial only updates odds ratio.
# Data generation function
OR_datagen_fn <- function(inputs, n = 500){
p_side_effects_t1 <- inputs[, "p_side_effects_t1"]
p_side_effects_t2 <- inputs[, "p_side_effects_t2"]
X1 <- rbinom(length(p_side_effects_t1), n, p_side_effects_t1)
X2 <- rbinom(length(p_side_effects_t2), n, p_side_effects_t2)
# Create odds ratio as summary statistic
OR <- (n - X2) / X2 / ((n - X1) / X1)
data_save <- data.frame(OR = OR)
return(data_save)
}
# EVSI calculation using GAM regression.
evsi_OR <- evsi(outputs = chemotherapy_output,
inputs = m_params,
pars = c("p_side_effects_t1", "p_side_effects_t2"),
n = seq(50, 1500, by = 50),
method = "gam",
datagen_fn = OR_datagen_fn,
par_fn = generate_psa_parameters)
plotting_2 <- evsi.plot.adapt(chemotherapy_output, m_params, c("logor_side_effects"), evsi_OR, "gam")
pdf("06_figs/EVSI_WTP_SE.pdf")
evsi.wtp.plot(plotting_2)
dev.off()
pop.adjust <- 46000 * (1 / (1 + 0.035)^3)
pdf("06_figs/ENBS_SE.pdf")
evsi.enbs.plot(plotting, c(1260000, 1400000), 2 * c(1560.55, 1600),
k = 20000, Pop = pop.adjust, Time = 7)
dev.off()
optim.ss(plotting, c(1260000, 1400000), 2 * c(1560.55, 1600),
k = 20000, Pop = pop.adjust, Time = 7)
## Full Study
## Moment Matching
# Data generation function
full_datagen_fn <- function(inputs, n = 500){
p_side_effects_t1 <- inputs[, "p_side_effects_t1"]
logor_side_effects <- inputs[, "logor_side_effects"]
# Odds for side effects for treatment 1
odds_side_effects_t1 <- p_side_effects_t1 / (1 - p_side_effects_t1)
# Odds for side effects on treatment 2
odds_side_effects_t2 <- odds_side_effects_t1 * exp(logor_side_effects)
# Probability of side effects under treatment 2
p_side_effects_t2 <- odds_side_effects_t2 / (1 + odds_side_effects_t2)
p_hospitalised_total <- inputs[, "p_hospitalised_total"]
p_died <- inputs[, "p_died"]
lambda_home <- inputs[, "lambda_home"]
lambda_hosp <- inputs[, "lambda_hosp"]
rate_recover_hosp <- -log(1 -lambda_hosp )
rate_recover_home <- -log(1 - lambda_home)
X1 <- X2 <- X_hosp <- X_dead <- N_recover_home <- N_recover_hospital <- vector("numeric", length = dim(inputs)[1])
T_home <- T_hosp <- matrix(NA, nrow = dim(inputs)[1], ncol = 2 * n)
for(i in 1:dim(inputs)[1]){
# Simulate the number of patients with side effects
X1[i] <- rbinom(1, n, p_side_effects_t1[i])
X2[i] <- rbinom(1, n, p_side_effects_t2[i])
# Simulate the number of patients hospitalised
X_hosp[i] <- rbinom(1, X1[i] + X2[i], p_hospitalised_total[i])
# Simulate the number of patients die
X_dead[i] <- rbinom(1, X_hosp[i], p_died[i])
## Simulate recovery times for patients
N_recover_home[i] <- X1[i] + X2[i] - X_hosp[i]
if(N_recover_home[i] > 0){
T_home[i, 1:N_recover_home[i]] <- rexp(N_recover_home[i], rate_recover_home[i])
}
N_recover_hospital[i] <- X_hosp[i] - X_dead[i]
if(N_recover_hospital[i] > 0){
T_hosp[i, 1:N_recover_hospital[i]] <- rexp(N_recover_hospital[i], rate_recover_hosp[i])
}
}
data_save_dat <- data.frame(cbind(X1 = X1, X2 = X2,
X_hosp = X_hosp, X_dead = X_dead,
N_recover_home = N_recover_home,
N_recover_hospital = N_recover_hospital,
T_home = T_home, T_hosp = T_hosp))
return(data_save_dat)
}
## Regression Based
full_datagen_fn_RB <- function(inputs, n = 500){
# Load the data
p_side_effects_t1 <- inputs[, "p_side_effects_t1"]
logor_side_effects <- inputs[, "logor_side_effects"]
# Odds for side effects for treatment 1
odds_side_effects_t1 <- p_side_effects_t1 / (1 - p_side_effects_t1)
# Odds for side effects on treatment 2
odds_side_effects_t2 <- odds_side_effects_t1 * exp(logor_side_effects)
# Probability of side effects under treatment 2
p_side_effects_t2 <- odds_side_effects_t2 / (1 + odds_side_effects_t2)
p_hospitalised_total <- inputs[, "p_hospitalised_total"]
p_died <- inputs[, "p_died"]
lambda_home <- inputs[, "lambda_home"]
lambda_hosp <- inputs[, "lambda_hosp"]
rate_recover_hosp <- -log(1 -lambda_hosp )
rate_recover_home <- -log(1 - lambda_home)
X1 <- X2 <- X_hosp <- X_dead <- N_recover_home <-
N_recover_hospital <- vector("numeric", length = dim(inputs)[1])
T_home <- T_hosp <- matrix(NA, nrow = dim(inputs)[1], ncol = 2 * n)
for(i in 1:dim(inputs)[1]){
# Simulate the number of patients with side effects
X1[i] <- rbinom(1, n, p_side_effects_t1[i])
X2[i] <- rbinom(1, n, p_side_effects_t2[i])
# Simulate the number of patients hospitalised
X_hosp[i] <- rbinom(1, X1[i] + X2[i], p_hospitalised_total[i])
# Simulate the number of patients die
X_dead[i] <- rbinom(1, X_hosp[i], p_died[i])
## Simulate recovery times for patients
N_recover_home[i] <- X1[i] + X2[i] - X_hosp[i]
if(N_recover_home[i] > 0){
T_home[i, 1:N_recover_home[i]] <- rexp(N_recover_home[i], rate_recover_home[i])
}
N_recover_hospital[i] <- X_hosp[i] - X_dead[i]
if(N_recover_hospital[i] > 0){
T_hosp[i, 1:N_recover_hospital[i]] <- rexp(N_recover_hospital[i], rate_recover_hosp[i])
}
}
OR <- (n - X2) / X2 / ((n - X1) / X1)
p_hosp <- X_hosp / (X1 + X2)
p_dead <- X_dead / X_hosp
T_home_sum <- rowSums(T_home, na.rm = TRUE)
T_hosp_sum <- rowSums(T_hosp, na.rm = TRUE)
data_save_dat <- data.frame(cbind(OR = OR,
p_hosp = p_hosp, p_dead = p_dead,
T_home_sum = T_home_sum,
T_hosp_sum = T_hosp_sum))
return(data_save_dat)
}
# EVSI calculation using MARS regression - large number of parameters.
evsi_OR_allout <- evsi(outputs = chemotherapy_output,
inputs = m_params,
pars = c("p_side_effects_t1", "logor_side_effects",
"p_hospitalised_total", "p_died",
"lambda_home", "lambda_hosp"),
n = seq(50, 1500, by = 50),
method = "earth",
datagen_fn = full_datagen_fn_RB,
par_fn = generate_psa_parameters)
plotting_3 <- evsi.plot.adapt(chemotherapy_output, m_params, c("logor_side_effects",
"p_hospitalised_total", "p_died",
"lambda_home", "lambda_hosp"),
evsi_OR_allout, "earth")
pop.adjust <- 46000 * (1 / (1 + 0.035)^3)
pdf("06_figs/ENBS_SEFU.pdf")
evsi.enbs.plot(plotting_3, c(1260000, 1400000), 2 * c(1560.55, 1600),
k = 20000, Pop = pop.adjust, Time = 7)
dev.off()
optim.ss(plotting_3, c(1260000, 1400000), 2 * c(1560.55, 1600),
k = 20000, Pop = pop.adjust, Time = 7)
pdf("06_figs/COSS_SEFU.pdf")
coss(plotting_3, c(1260000, 1400000), 2 * c(1560.55, 1600),
Pop = pop.adjust, Time = 7)
dev.off()
pdf("06_figs/prob_SEFU.pdf")
evsi.prob.plot(plotting_3, setup = c(1260000, 1400000), pp = 2 * c(1560.55, 1600), k = 20000,
N = 1080, Pop = c(0,60000), Time = c(0,15))
dev.off()
# Analysis function based on JAGS
full_analysis_fn <- function(data, args, pars){
## Format Data - Adjust for 0 recovery times
T_home <- NA
if(data$N_recover_home > 0){
T_home <- as.numeric(as.matrix(data[, (1:data$N_recover_home) + 6]))
}
T_hosp <- NA
if(data$N_recover_hospital > 0){
T_hosp <- as.vector(as.matrix(data[,
(6 + 2 * args$n) + (1:data$N_recover_hospital)]))
}
# Create the data list for JAGS
data_jags <- list(X1 = data$X1,
X2 = data$X2,
X_hosp = data$X_hosp,
X_dead = data$X_dead,
T_home = T_home,
T_hosp = T_hosp,
N_recover_home = ifelse(data$N_recover_home > 0,
data$N_recover_home,
1),
N_recover_hosp = ifelse(data$N_recover_hospital > 0,
data$N_recover_hospital,
1),
n = args$n,
n_side_effects = args$n_side_effects,
n_patients = args$n_patients,
logor_side_effects_mu = args$logor_side_effects_mu,
logor_side_effects_sd = args$logor_side_effects_sd,
p_recovery_home_alpha = betaPar(args$p_recovery_home_mu,
args$p_recovery_home_sd)$alpha,
p_recovery_home_beta = betaPar(args$p_recovery_home_mu,
args$p_recovery_home_sd)$beta,
p_recovery_hosp_alpha = betaPar(args$p_recovery_hosp_mu,
args$p_recovery_hosp_sd)$alpha,
p_recovery_hosp_beta = betaPar(args$p_recovery_hosp_mu,
args$p_recovery_hosp_sd)$beta,
n_died = args$n_died,
n_hospitalised = args$n_hospitalised)
LogOR_addoutcomes_trial <- function(){
## Models for the data
X1 ~ dbin(p_side_effects_t1, n)
X2 ~ dbin(p_side_effects_t2, n)
X_hosp ~ dbinom(p_hospitalised_total, X1 + X2)
X_dead ~ dbin(p_died, X_hosp)
rate_recover_home <- -log(1 - lambda_home)
rate_recover_hosp <- -log(1 - lambda_hosp)
for(i in 1:N_recover_home){
T_home[i] ~ dexp(rate_recover_home)
}
for(i in 1:N_recover_hosp){
T_hosp[i] ~ dexp(rate_recover_hosp)
}
# Probability of side effects under treatment 1
p_side_effects_t1 ~ dbeta(1 + n_side_effects,
1 + n_patients - n_side_effects)
# Log odds of side effects on treatment 2
logor_side_effects ~ dnorm(logor_side_effects_mu, logor_side_effects_sd)
# Odds of side effects on treatment 1
odds_side_effects_t1 <- p_side_effects_t1 / (1 - p_side_effects_t1)
# Odds for side effects on treatment 2
odds_side_effects_t2 <- odds_side_effects_t1 * exp(logor_side_effects)
# Probability of side effects under treatment 2
p_side_effects_t2 <- odds_side_effects_t2 / (1 + odds_side_effects_t2)
## Variables to define transition probabilities
# Probability that a patient is hospitalised over the time horizon
p_hospitalised_total ~ dbeta(1 + n_hospitalised,
1 + n_side_effects - n_hospitalised)
# Probability that a patient dies over the time horizon given they were
# hospitalised
p_died ~ dbeta(1 + n_died, 1 + n_hospitalised - n_died)
# Lambda_home: Conditional probability that a patient recovers considering
# that they are not hospitalised
lambda_home ~ dbeta(p_recovery_home_alpha, p_recovery_home_beta)
# Lambda_hosp: Conditional probability that a patient recovers considering
# that they do not die
lambda_hosp ~ dbeta(p_recovery_hosp_alpha, p_recovery_hosp_beta)
}
filein <- file.path(tempdir(),fileext="datmodel.txt")
R2OpenBUGS::write.model(LogOR_addoutcomes_trial,filein)
# Perform the MCMC simulation with OpenBUGS.
# Close OpenBUGS once it has finished (if debug is set to TRUE)
bugs.data <- jags(
data = data_jags,
parameters.to.save = pars,
model.file = filein,
n.chains = 1,
n.iter = args$n.iter,
n.thin = 1,
n.burnin = 250, progress.bar = "none")
return(data.frame(logor_side_effects = bugs.data$BUGSoutput$sims.matrix[, "logor_side_effects"],
p_hospitalised_total= bugs.data$BUGSoutput$sims.matrix[, "p_hospitalised_total"],
p_died = bugs.data$BUGSoutput$sims.matrix[, "p_died"],
lambda_home = bugs.data$BUGSoutput$sims.matrix[, "lambda_home"],
lambda_hosp = bugs.data$BUGSoutput$sims.matrix[, "lambda_hosp"]))
}
# EVSI calculation using the momemt matching method.
evsi_OR_allout_MM <- evsi(outputs = chemotherapy_output,
inputs = m_params,
pars = c("logor_side_effects",
"p_hospitalised_total", "p_died",
"lambda_home", "lambda_hosp"),
pars_datagen = c("p_side_effects_t1",
"logor_side_effects",
"p_hospitalised_total", "p_died",
"lambda_home", "lambda_hosp"),
n = seq(50, 1500, by = 50),
method = "mm",
datagen_fn = full_datagen_fn,
model_fn = calculate_costs_effects,
analysis_args = list(n_side_effects = n_side_effects,
n_patients = n_patients,
n = 50,
logor_side_effects_mu = logor_side_effects_mu,
logor_side_effects_sd = logor_side_effects_sd,
betaPar = betaPar,
p_recovery_home_mu = p_recovery_home_mu,
p_recovery_home_sd = p_recovery_home_sd,
p_recovery_hosp_mu = p_recovery_hosp_mu,
p_recovery_hosp_sd = p_recovery_hosp_sd,
n.iter = 5250,
n_died = n_died,
n_hospitalised = n_hospitalised,
p_side_effects_t1 = m_params$p_side_effects_t1),
analysis_fn = full_analysis_fn,
par_fn = generate_psa_parameters,
npreg_method = "earth")
plotting_4 <- evsi.plot.adapt(chemotherapy_output, m_params, c("logor_side_effects",
"p_hospitalised_total", "p_died",
"lambda_home", "lambda_hosp"),
evsi_OR_allout_MM, "earth")
pop.adjust <- 46000 * (1 / (1 + 0.035)^3)
pdf("06_figs/ENBS_SEFU_MM.pdf")
evsi.enbs.plot(plotting_4, c(1260000, 1400000), 2 * c(1560.55, 1600),
k = 20000, Pop = pop.adjust, Time = 7)
dev.off()
optim.ss(plotting_4, c(1260000, 1400000), 2 * c(1560.55, 1600),
k = 20000, Pop = pop.adjust, Time = 7)
pdf("06_figs/COSS_SEFU_MM.pdf")
coss(plotting_4, c(1260000, 1400000), 2 * c(1560.55, 1600),
Pop = pop.adjust, Time = 7)
dev.off()
pdf("06_figs/prob_SEFU_MM.pdf")
evsi.prob.plot(plotting_4, setup = c(1260000, 1400000), pp = 2 * c(1560.55, 1600), k = 20000,
N = 1020, Pop = c(0,60000), Time = c(0,15))
dev.off()
### Utilities ###
# Data generation function
utility_datagen_fn <- function(inputs, n = 20,
sd_recovery_fun = function(){return(runif(1, 0.000001, 0.15))},
sd_home_care_fun = function(){return(runif(1, 0.00001, 0.6))},
sd_hospital_fun = function(){return(runif(1, 0.00001, 0.4))}
){
# Load the data
X_home_care <- X_hospital <- X_recovery <- matrix(NA, nrow = dim(inputs)[1], ncol = n[1])
X_recovery_mean1 <- X_recovery_mean2 <- X_home_care_mean1 <- X_home_care_mean2 <-
X_hospital_mean1 <- X_hospital_mean2 <- vector("numeric", dim(inputs)[1])
for(i in 1:dim(inputs)[1]){
set.seed(123 + i)
m_recovery <- inputs[i, "u_recovery"]
m_home_care <- inputs[i, "u_home_care"]
m_hospital <- inputs[i, "u_hospital"]
sd_recovery <- sd_recovery_fun()
sd_home_care <- sd_home_care_fun()
sd_hospital <- sd_hospital_fun()
# Simulate the costs
X_recovery[i, ] <- truncnorm::rtruncnorm(n[1], mean = m_recovery, sd = sd_recovery,
a = -Inf, b = 1)
X_home_care[i, ] <- truncnorm::rtruncnorm(n[1], mean = m_home_care, sd = sd_home_care,
a = -Inf, b = 1)
X_hospital[i, ] <- truncnorm::rtruncnorm(n[1], mean = m_hospital, sd = sd_hospital,
a = -Inf, b = 1) }
data_save_dat <- data.frame(cbind(X_recovery = X_recovery,
X_home_care = X_home_care,
X_hospital = X_hospital))
return(data_save_dat)
}
# Analysis function based on JAGS
utility_analysis_fn <- function(data, args, pars){
# Create the data list for JAGS
data_jags <- list(X_recovery = as.vector(as.matrix(data[, (1:args$n)])),
X_home_care = as.vector(as.matrix(data[, args$n + (1:args$n)])),
X_hospital = as.vector(as.matrix(data[, 2*args$n + (1:args$n)])),
n = args$n,
alpha_recovery = args$betaPar(
args$u_recovery_mu,
args$u_recovery_sd
)$alpha,
beta_recovery = args$betaPar(
args$u_recovery_mu,
args$u_recovery_sd
)$beta,
alpha_home_care = args$betaPar(
args$u_home_care_mu,
args$u_home_care_sd
)$alpha,
beta_home_care = args$betaPar(
args$u_home_care_mu,
args$u_home_care_sd
)$beta,
alpha_hospital = args$betaPar(
args$u_hospital_mu,
args$u_hospital_sd
)$alpha,
beta_hospital = args$betaPar(
args$u_hospital_mu,
args$u_hospital_sd
)$beta)
trial <- function(){
for(i in 1:n){
X_recovery[i] ~ dnorm(u_recovery, tau_recovery);T(, 1)
X_home_care[i] ~ dnorm(u_home_care, tau_home_care);T(, 1)
X_hospital[i] ~ dnorm(u_hospital, tau_hospital);T(, 1)
}
u_recovery ~ dbeta(alpha_recovery, beta_recovery)
u_home_care ~ dbeta(alpha_home_care, beta_home_care)
u_hospital ~ dbeta(alpha_hospital, beta_hospital)
sd_recovery ~ dunif(0.000001, 0.15)
sd_home_care ~ dunif(0.00001, 0.6)
sd_hospital ~ dunif(0.00001, 0.4)
tau_recovery <- 1 / sd_recovery ^ 2
tau_home_care <- 1 / sd_home_care ^ 2
tau_hospital <- 1 / sd_hospital ^ 2
}
filein <- file.path(tempdir(),fileext="datmodel.txt")
R2OpenBUGS::write.model(trial,filein)
# Perform the MCMC simulation with OpenBUGS.
# Close OpenBUGS once it has finished (if debug is set to TRUE)
bugs.data <- jags(
data = data_jags,
parameters.to.save = pars,
model.file = filein,
n.chains = 1,
n.iter = args$n.iter,
n.thin = 1,
n.burnin = 250, progress.bar = "none")
return(data.frame(u_recovery = bugs.data$BUGSoutput$sims.matrix[, "u_recovery"],
u_home_care = bugs.data$BUGSoutput$sims.matrix[, "u_home_care"],
u_hospital = bugs.data$BUGSoutput$sims.matrix[, "u_hospital"]))
}
# EVSI calculation using the momemt matching method.
evsi_utility <- evsi(outputs = chemotherapy_output,
inputs = m_params,
pars = c("u_recovery", "u_home_care", "u_hospital"),
n = seq(20, 300, by = 10),
method = "mm",
datagen_fn = utility_datagen_fn,
model_fn = calculate_costs_effects,
analysis_args = list(n = 20,
betaPar = betaPar,
u_recovery_mu = u_recovery_mu,
u_recovery_sd = u_recovery_sd,
u_home_care_mu = u_home_care_mu,
u_home_care_sd = u_home_care_sd,
u_hospital_mu = u_hospital_mu,
u_hospital_sd = u_hospital_sd,
n.iter = 5000),
analysis_fn = utility_analysis_fn,
par_fn = generate_psa_parameters,
Q = 50)
plotting_6 <- evsi.plot.adapt(chemotherapy_output, m_params, c("u_recovery", "u_home_care", "u_hospital"),
evsi_utility, "gam")
pdf("06_figs/EVSI_WTP_U_MM.pdf")
evsi.wtp.plot(plotting_6)
dev.off()
pop.adjust <- 46000 * (1 / (1 + 0.035)^2)
pdf("06_figs/ENBS_U_MM.pdf")
evsi.enbs.plot(plotting_6, c(90000, 95000), 3 * c(370-25, 370),
k = 20000, Pop = pop.adjust, Time = 8)
dev.off()
optim.ss(plotting_6, c(90000, 95000), 3 * c(370-25, 370),
k = 20000, Pop = pop.adjust, Time = 8)
pdf("06_figs/COSS_U_MM.pdf")
coss(plotting_6, c(90000, 95000), 3 * c(370-25, 370),
Pop = pop.adjust, Time = 8)
dev.off()
pdf("06_figs/prob_U_MM.pdf")
evsi.prob.plot(plotting_6, setup = c(90000, 95000), pp = 3 * c(370-25, 370), k = 20000,
N = 300, Pop = c(0,60000), Time = c(0,15))
dev.off()
#### STUDY 3: Long-term Survival ####
longterm_datagen_fn <- function(inputs, n = 46000){
rate_longterm <- inputs[, "rate_longterm"]
sum_of_surv <- rgamma(dim(inputs)[1], shape = 2 * n, scale = n / rate_longterm)
return(data.frame(surv_sum = sum_of_surv))
}
# EVSI calculation using GAM regression.
evsi_longterm <- evsi(outputs = chemotherapy_output,
inputs = m_params,
pars = c("rate_longterm"),
n = 46000,
method = "gam",
datagen_fn = longterm_datagen_fn,
par_fn = generate_psa_parameters)
plotting_7 <- evsi.plot.adapt(chemotherapy_output, m_params, c("rate_longterm"),
evsi_longterm, "gam")
pdf("06_figs/EVSI_LT.pdf")
evsi.wtp.plot(plotting_7)
dev.off()
evsi_longterm %>% filter(k %in% c(20000, 25000, 30000))
pop.adjust <- 46000 * (1 / (1 + 0.035)^0.5)
ENBS.fun(evsi_longterm %>% filter(k %in% c(20000, 25000, 30000)),
cost=c(60000, 60000), Pop = pop.adjust, Time = 9.5, Dis = 0.035
)
optim.ss(plotting, c(60000, 60000), c(0, 0),
k = 30000, Pop = pop.adjust, Time = 9.5)
pdf("06_figs/EVSI_LT_Prob.pdf")
evsi.prob.plot(plotting, c(60000, 60000), c(0, 0),
k = 20000, Pop = c(0, pop.adjust * 2), Time = c(0, 15))
dev.off()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.