Nothing
## Copied from
## https://github.com/convoigroup/Chemotherapy_Book/blob/main/03_R/02_model_functions.R
## https://github.com/convoigroup/Chemotherapy_Book/blob/main/03_R/02_misc_functions.R
## on 28/03/2023
## but with the constants sourced from a list chemo_constants, rather than global variables
## This list is sourced and built in data_raw/chemo.R
################################################################################
#### Misc Functions for the Chemotherapy Model
################################################################################
## Function to transform values for mean and standard deviation into parameters
## for a Beta distribution
betaPar <- function(m, s) {
## m: Mean of the Beta distribution
## m: Standard deviation of the Beta distribution
var <- s ^ 2
alpha <- ((1 - m) / var - 1 / m) * m ^ 2
beta <- alpha * (1 / m - 1)
return(
list(alpha = alpha, beta = beta)
)
}
## Function to transform values for mean and standard deviation into parameters
## for a Log-Normal distribution
lognPar <- function(m,s) {
## m: Mean of Log-Normal distribution
## s: Standard deiviation of Log-Normal distribution
var <- s^2
meanlog <- log(m) - 0.5 * log(1 + var/m^2)
varlog <- log(1 + (var/m^2))
sdlog <- sqrt(varlog)
return(
list(meanlog = meanlog, sdlog = sdlog)
)
}
## Function to transform values for mean and standard deviation into parameters
## for a Gamma distribution
gammaPar <- function(m,s) {
## m: Mean of Log-Normal distribution
## s: Standard deiviation of Log-Normal distribution
var <- s^2
beta <- m / var
alpha <- m * beta
return(
list(alpha = alpha, beta = beta)
)
}
################################################################################
#### Functions for the Chemotherapy Model
################################################################################
## Function to generate the PSA parameters
generate_psa_parameters <- function(n){
with(voi::chemo_constants, {
## Probability of side effects under treatment 1
p_side_effects_t1 <- rbeta(n,
1 + n_side_effects,
1 + n_patients - n_side_effects)
## Log odds of side effects on treatment 2
logor_side_effects <- rnorm(n, logor_side_effects_mu, logor_side_effects_sd)
## Odds of side effects on treatment 1
odds_side_effects_t1 <- p_side_effects_t1 / (1 - p_side_effects_t1)
## Odds for side effects on treatment 2
odds_side_effects_t2 <- odds_side_effects_t1 * exp(logor_side_effects)
## Probability of side effects under treatment 2
p_side_effects_t2 <- odds_side_effects_t2 / (1 + odds_side_effects_t2)
#### Variables to define transition probabilities
## Probability that a patient is hospitalised over the time horizon
p_hospitalised_total <- rbeta(n,
1 + n_hospitalised,
1 + n_side_effects - n_hospitalised)
## Probability that a patient dies over the time horizon given they were
## hospitalised
p_died <- rbeta(n, 1 + n_died, 1 + n_hospitalised - n_died)
## Lambda_home: Conditional probability that a patient recovers considering
## that they are not hospitalised
betapars <- betaPar(p_recovery_home_mu, p_recovery_home_sd)
lambda_home <- rbeta(n, betapars$alpha, betapars$beta)
## Lambda_hosp: Conditional probability that a patient recovers considering
## that they do not die
betapars <- betaPar(p_recovery_hosp_mu, p_recovery_hosp_sd)
lambda_hosp <- rbeta(n, betapars$alpha, betapars$beta)
## Health State Costs
lnpars <- lognPar(c_home_care_mu, c_home_care_sd)
c_home_care <- rlnorm(n, lnpars$meanlog, lnpars$sdlog)
lnpars <- lognPar(c_hospital_mu, c_hospital_sd)
c_hospital <- rlnorm(n, lnpars$meanlog, lnpars$sdlog)
lnpars <- lognPar(c_death_mu, c_death_sd)
c_death <- rlnorm(n, lnpars$meanlog, lnpars$sdlog)
## Health Utilities
betapars <- betaPar(u_recovery_mu, u_recovery_sd)
u_recovery <- rbeta(n, betapars$alpha, betapars$beta)
betapars <- betaPar(u_home_care_mu, u_home_care_sd)
u_home_care <- rbeta(n, betapars$alpha, betapars$beta)
betapars <- betaPar(u_hospital_mu, u_hospital_sd)
u_hospital <- rbeta(n, betapars$alpha, betapars$beta)
## Long term survival
gammapars <- gammaPar(rate_longterm_mu, rate_longterm_sd)
rate_longterm <- rgamma(n, shape = gammapars$alpha, rate = gammapars$beta)
## Specify a matrix containing all the parameters
params_matrix <- data.frame(
p_side_effects_t1,
p_side_effects_t2,
c_home_care, c_hospital, c_death,
u_recovery, u_home_care, u_hospital,
logor_side_effects,
p_hospitalised_total, p_died,
lambda_home, lambda_hosp, rate_longterm)
return(params_matrix)
})
}
## Function to calculate average time each patient with adverse events spends
## in the health states of the Markov model
calculate_state_occupancy_markov_model <- function(
p_side_effects_t1,
p_side_effects_t2,
p_home_home, p_home_hospital, p_home_recover,
p_hospital_hospital, p_hospital_recover, p_hospital_dead,
p_longterm)
# All function arguments come from the generate_psa_parameters function except
# time_horizon which is in chemo_constants
{
## Markov transition probability matrix
## States: Home care, Hospital care, Recovery, Death
MM.mat <- matrix(c(p_home_home, p_home_hospital, p_home_recover, 0,
0, p_hospital_hospital, p_hospital_recover, p_hospital_dead,
0, 0, 1 - p_longterm, p_longterm,
0, 0, 0, 1),
nrow = 4, ncol = 4, byrow = TRUE)
## Number of patients in each state for each time point
## 3 dimensions: number of states, number of time points,
## number of treatment options
time_horizon <- voi::chemo_constants$time_horizon
trace <- array(0, dim = c(4, time_horizon + 1, 2))
# Initialise with the predicted number of side effects in the population
trace[1, 1, ] <- c(p_side_effects_t1, p_side_effects_t2)
# Run the markove model over the time horizon
for(i in 2:(time_horizon + 1)){
trace[, i, 1] <- trace[, i - 1, 1] %*% MM.mat
trace[, i, 2] <- trace[, i - 1, 2] %*% MM.mat
}
return(trace) # 4*16*2 array
}
## Function to calculate the costs and effects from our model
calculate_costs_effects <- function(
p_side_effects_t1,
p_side_effects_t2,
p_hospitalised_total, p_died,
lambda_home, lambda_hosp,
c_home_care, c_hospital, c_death,
u_recovery, u_home_care, u_hospital,
logor_side_effects, rate_longterm)
{
with(voi::chemo_constants, {
## Calculate p_side_effects_2 from odds ratio
## Odds of side effects on treatment 1
odds_side_effects_t1 <- p_side_effects_t1 / (1 - p_side_effects_t1)
## Odds for side effects on treatment 2
odds_side_effects_t2 <- odds_side_effects_t1 * exp(logor_side_effects)
## Probability of side effects under treatment 2
p_side_effects_t2 <- odds_side_effects_t2 / (1 + odds_side_effects_t2)
## Transition Probabilities
p_home_hospital <- 1 - (1 - p_hospitalised_total) ^ (1 / time_horizon)
p_home_home <- (1 - lambda_home) * (1 - p_home_hospital)
p_home_recover <- lambda_home * (1 - p_home_hospital)
p_hospital_dead <- 1 - (1 - p_died) ^ (1 / time_horizon)
p_hospital_hospital <- (1 - lambda_hosp) * (1 - p_hospital_dead)
p_hospital_recover <- lambda_hosp * (1 - p_hospital_dead)
p_longterm <- 1 - exp(-rate_longterm * 1/52)
## Calculate the trace matrix from the markov model function
m_markov_trace <- calculate_state_occupancy_markov_model(
p_side_effects_t1,
p_side_effects_t2,
p_home_home, p_home_hospital, p_home_recover,
p_hospital_hospital, p_hospital_recover, p_hospital_dead,
p_longterm)
## costs and effectiveness for four states
c_state_vector <- c(c_home_care, c_hospital, 0, 0)
u_state_vector <- c(u_home_care, u_hospital, u_recovery, 0)
## Estimate the cost of side effects from the Markov model
c_side_effects <- array(NA, dim = 2)
## Average cost for both Soc and novel treatment per person
## (The cost includes one-off cost of death for all patients who died)
c_side_effects[1] <- (sum(c_state_vector %*% m_markov_trace[, , 1]) +
c_death * m_markov_trace[4, time_horizon + 1, 1]) / 52
c_side_effects[2] <- (sum(c_state_vector %*% m_markov_trace[, , 2]) +
c_death * m_markov_trace[4, time_horizon + 1, 2]) / 52
c_drug <- c(c_treatment_1, c_treatment_2)
c_longterm <- (1 - m_markov_trace[4, time_horizon + 1, ]) *
(pexp(time_horizon_longterm - 2, rate = rate_longterm)) * c_death
c_overall <- c(c_drug + c_side_effects + c_longterm)
## Total QALY of side effects for both Soc and novel treatment
u_side_effects <- array(NA, dim = 2)
u_side_effects[1] <- sum(u_state_vector %*% m_markov_trace[,,1]) / 52
u_side_effects[2] <- sum(u_state_vector %*% m_markov_trace[,,2]) / 52
u_longterm <- (1 - m_markov_trace[4, time_horizon + 1, ]) *
integrate(function(x){ (1 - pexp(x, rate = rate_longterm)) * u_home_care}, lower = 2, upper = time_horizon_longterm)$value
## QALY of total number of patients who do not experience adverse events for 15 days
p_no_side_effects <- 1 -
c(p_side_effects_t1,
p_side_effects_t2)
u_no_side_effects <- p_no_side_effects * u_recovery * (time_horizon + 1) / 52
## Average effect for both Soc and novel treatment per person
u_overall <- c(u_side_effects + u_no_side_effects + u_longterm)
names(c_overall) <- paste0("cost",seq_along(c_overall))
names(u_overall) <- paste0("eff",seq_along(u_overall))
output <- array(NA, dim = c(2, length(u_overall)), # CJ FIXED
dimnames = list(c("Effects", "Costs"),
c("SoC", "Novel") # CJ FIXED FROM UPSTREAM
))
output[1, ] <- u_overall
output[2, ] <- c_overall
return(output)
})
}
## NOTE cost_effects is not the output from calculate_costs_effects which is 2 x ntreatments (for one simulation)
## but a 3D array of size nsim x 2 (i.e. costs, effects) x ntreatments
## wtp assumed to be scalar.
calculate_net_benefit <- function(
costs_effects,
wtp)
{
if(!is.null(dim(costs_effects))){
nb <- wtp * costs_effects[, 1, ] -
costs_effects[, 2, ]
}
return(nb)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.