wave.multiple.cross.regression: Wavelet routine for multiple cross-regression

Description Usage Arguments Details Value Note Author(s) References Examples

Description

Produces an estimate of the multiscale multiple cross-regression (as defined below).

Usage

1
 wave.multiple.cross.regression(xx, lag.max=NULL, p = .975, ymaxr=NULL)

Arguments

xx

A list of n (multiscaled) time series, usually the outcomes of dwt or modwt, i.e. xx <- list(v1.modwt.bw, v2.modwt.bw, v3.modwt.bw)

lag.max

maximum lag (and lead). If not set, it defaults to half the square root of the length of the original series.

p

one minus the two-sided p-value for the confidence interval, i.e. the cdf value.

ymaxr

index number of the variable whose correlation is calculated against a linear combination of the rest, otherwise at each wavelet level wmc chooses the one maximizing the multiple correlation.

Details

The routine calculates one single set of wavelet multiple cross-regressions out of n variables that can be plotted as one single set of graphs (one per wavelet level).

Value

List of four elements:

xy.mulcor

List of three elements:

xy.mulreg:

List of seven elements:

YmaxR:

numeric vector giving, at each wavelet level, the index number of the variable whose correlation is calculated against a linear combination of the rest. By default, wmcr chooses at each wavelet level the variable maximizing the multiple correlation.

data:

dataframe (rows = #levels, cols = #regressors) of original data.

Note

Needs waveslim package to calculate dwt or modwt coefficients as inputs to the routine (also for data in the example).

Author(s)

Javier Fernández-Macho, Dpt. of Quantitative Methods, University of the Basque Country, Agirre Lehendakari etorb. 83, E48015 BILBAO, Spain. (email: javier.fernandezmacho at ehu.eus).

References

Fernández-Macho, J., 2018. Time-localized wavelet multiple regression and correlation, Physica A: Statistical Mechanics, vol. 490, p. 1226–1238. <DOI:10.1016/j.physa.2017.11.050>

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
## Based on data from Figure 7.9 in Gencay, Selcuk and Whitcher (2001)
## plus one random series.

library(wavemulcor)

data(exchange)
returns <- diff(log(exchange))
returns <- ts(returns, start=1970, freq=12)
N <- dim(returns)[1]

wf <- "d4"
J <- trunc(log2(N))-3
lmax <- 36

set.seed(140859)

demusd.modwt <- brick.wall(modwt(returns[,"DEM.USD"], wf, J), wf)
jpyusd.modwt <- brick.wall(modwt(returns[,"JPY.USD"], wf, J), wf)
rand.modwt   <- brick.wall(modwt(rnorm(length(returns[,"DEM.USD"])), wf, J), wf)

# ---------------------------

xx <- list(demusd.modwt, jpyusd.modwt, rand.modwt)
names(xx) <- c("DEM.USD","JPY.USD","rand")

Lst <- wave.multiple.cross.regression(xx, lmax)

# ---------------------------

##Producing correlation plot

plot_wave.multiple.cross.correlation(Lst, lmax) #, by=2)

##Producing regression plot

plot_wave.multiple.cross.regression(Lst, lmax) #, by=2)

wavemulcor documentation built on Sept. 5, 2021, 5:56 p.m.