wave.multiple.regression: Wavelet routine for multiple regression

Description Usage Arguments Details Value Note Author(s) References Examples

Description

Produces an estimate of the multiscale multiple regression (as defined below) along with approximate confidence intervals.

Usage

1
wave.multiple.regression(xx, N, p = 0.975, ymaxr=NULL)

Arguments

xx

A list of n (multiscaled) time series, usually the outcomes of dwt or modwt, i.e. xx <- list(v1.modwt.bw, v2.modwt.bw, v3.modwt.bw)

N

length of the time series

p

one minus the two-sided p-value for the confidence interval, i.e. the cdf value.

ymaxr

index number of the variable whose correlation is calculated against a linear combination of the rest, otherwise at each wavelet level wmc chooses the one maximizing the multiple correlation.

Details

TThe routine calculates one single set of wavelet multiple regressions out of n variables that can be plotted in a single graph.

Value

List of four elements:

xy.mulcor:

numeric matrix with as many rows as levels in the wavelet transform object. The first column provides the point estimate for the wavelet multiple correlation, followed by the lower and upper bounds from the confidence interval.

xy.mulreg:

List of seven elements:

YmaxR:

numeric vector giving, at each wavelet level, the index number of the variable whose correlation is calculated against a linear combination of the rest. By default, wmc chooses at each wavelet level the variable maximizing the multiple correlation.

data:

dataframe (rows = #levels, cols = #regressors) of original data.

Note

Needs waveslim package to calculate dwt or modwt coefficients as inputs to the routine (also for data in the example).

Author(s)

Javier Fernández-Macho, Dpt. of Quantitative Methods, University of the Basque Country, Agirre Lehendakari etorb. 83, E48015 BILBAO, Spain. (email: javier.fernandezmacho at ehu.eus).

References

Fernández-Macho, J., 2018. Time-localized wavelet multiple regression and correlation, Physica A: Statistical Mechanics, vol. 490, p. 1226–1238. <DOI:10.1016/j.physa.2017.11.050>

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
## Based on data from Figure 7.8 in Gencay, Selcuk and Whitcher (2001)
## plus one random series.

library(wavemulcor)

data(exchange)
returns <- diff(log(as.matrix(exchange)))
returns <- ts(returns, start=1970, freq=12)
N <- dim(returns)[1]

wf <- "d4"
J <- trunc(log2(N))-3

set.seed(140859)

demusd.modwt <- brick.wall(modwt(returns[,"DEM.USD"], wf, J), wf)
jpyusd.modwt <- brick.wall(modwt(returns[,"JPY.USD"], wf, J), wf)
xrand.modwt <- brick.wall(modwt(rnorm(length(returns[,"DEM.USD"])), wf, J), wf)

# ---------------------------

xx <- list(demusd.modwt, jpyusd.modwt, xrand.modwt)
names(xx) <- c("DEM.USD","JPY.USD","rand")

Lst <- wave.multiple.regression(xx)

# ---------------------------

##Producing correlation plot
plot_wave.multiple.correlation(Lst)

##Producing regression plot
plot_wave.multiple.regression(Lst)

wavemulcor documentation built on July 1, 2020, 5:10 p.m.