Nothing
findwtdinteraction.lmerMod <- function(x, across, by=NULL, at=NULL, acrosslevs=NULL, bylevs=NULL, atlevs=NULL, weight=NULL, dvname=NULL, acclevnames=NULL, bylevnames=NULL, atlevnames=NULL, stdzacross=FALSE, stdzby=FALSE, stdzat=FALSE, limitlevs=20, type="response", approach="prototypical", data=NULL, nsim=100){
reg <- x
if(!is.null(data))
df <- data
if(is.null(data))
df <- attributes(x)$frame
if(is.null(weight)){
if(!is.null(attributes(x)$frame[,"(weights)"]))
weight <- attributes(x)$frame[,"(weights)"]
if(is.null(weight))
weight <- rep(1, dim(df)[1])
}
if(length(weight)!=(dim(df)[1]))
stop("Weight vector length must match the number of complete cases in the regression.")
clsset <- sapply(lapply(df, class), function(x) x[1])
acclass <- class(df[,across])[1]
if(stdzacross==TRUE)
df[,across] <- stdz(df[,across], weight)
if(stdzby==TRUE & !is.null(by))
df[,by] <- stdz(df[,by], weight)
if(stdzat==TRUE & !is.null(at))
df[,at] <- stdz(df[,at], weight)
if(is.null(acrosslevs)){
if(stdzacross==TRUE)
acrosslevs <- c(-1,1)
if(stdzacross==FALSE)
acrosslevs <- sort(unique(df[,across]))
if(length(acrosslevs)>limitlevs & is.numeric(acrosslevs))
acrosslevs <- seq(min(df[,across], na.rm=TRUE), max(df[,across], na.rm=TRUE), (max(df[,across], na.rm=TRUE)-min(df[,across], na.rm=TRUE))/(limitlevs-1))
}
if(is.null(dvname))
dvname <- names(df)[1]
if(!is.null(by)){
byclass <- class(df[,by])[1]
if(is.null(bylevs)){
if(stdzby==TRUE)
bylevs <- c(-1,1)
if(stdzby==FALSE)
bylevs <- sort(unique(df[,by]))
if(length(bylevs)>limitlevs & is.numeric(bylevs))
bylevs <- seq(min(df[,by], na.rm=TRUE), max(df[,by], na.rm=TRUE), (max(df[,by], na.rm=TRUE)-min(df[,by], na.rm=TRUE))/(limitlevs-1))
}
}
if(is.null(by)){
by <- "All"
df[,by] <- "All"
bylevs <- "All"
hasby <- FALSE
stdzby <- FALSE
}
if(!is.null(at)){
atclass <- class(df[,at])[1]
if(is.null(atlevs)){
if(stdzat==TRUE)
atlevs <- c(-1,1)
if(stdzat==FALSE)
atlevs <- sort(unique(df[,at]))
if(length(atlevs)>limitlevs & is.numeric(atlevs))
atlevs <- seq(min(df[,at], na.rm=TRUE), max(df[,at], na.rm=TRUE), (max(df[,at], na.rm=TRUE)-min(df[,at], na.rm=TRUE))/(limitlevs-1))
}
hasat <- TRUE
if(is.null(atlevnames)){
if(stdzat==TRUE)
atlevnames <- paste(atlevs, "SD", sep="")
if(stdzat==FALSE)
atlevnames <- paste(atlevs)
}
}
if(is.null(at)){
at <- "All"
df[,at] <- "All"
atlevs <- "All"
atlevnames <- "All"
hasat <- FALSE
stdzat <- FALSE
}
if(is.null(bylevnames)){
if(stdzby==TRUE)
bylevnames <- paste(bylevs, "SD", sep="")
if(stdzby==FALSE)
bylevnames <- paste(bylevs)
}
if(is.null(acclevnames)){
if(stdzacross==TRUE)
acclevnames <- paste(acrosslevs, "SD", sep="")
if(stdzacross==FALSE)
acclevnames <- paste(acrosslevs)
}
levs <- acrosslevs
ol <- acrosslevs
lng <- length(acrosslevs)
if(sum(clsset=="matrix")>0)
stop(paste("Interactions Cannot Currently Be Resolved With Matrix Predictors, Please Insert Each Variable in", names(clsset)[clsset=="matrix"], "Separately in Regression Before Using This Tool")) # TRY TO MAKE THIS WORK EVENTUALLY
out <- NULL
out$Meta <- list(dvname=dvname, across=across, by=by, at=at)
out$Means <- as.list(1:length(atlevs))
names(out$Means) <- atlevnames
if(approach=="prototypical"){
pd <- data.frame(na.omit(df)[1:lng,])
for(i in 1:dim(pd)[2]){
if(class(pd[,i])[1]=="numeric")
pd[,i] <- rep(wtd.mean(df[,i], weight, na.rm=TRUE), lng)
if(class(pd[,i])[1]=="ordered")
pd[,i] <- ordered(rep(wtd.table(df[,i], weight)$x[cumsum(wtd.table(df[,i], weight)$sum.of.weights)/sum(wtd.table(df[,i], weight)$sum.of.weights)>=.5][1], lng), levels=levels(df[,i]))
if(class(pd[,i])[1]=="factor")
pd[,i] <- factor(rep(wtd.table(df[,i], weight)$x[wtd.table(df[,i], weight)$sum.of.weights==max(wtd.table(df[,i], weight)$sum.of.weights)][1], lng), levels=levels(df[,i])) # FIX MINOR BUG HERE WHERE TRAILING " " IN ORIGINAL FACTOR LEVEL CAN GET DROPPED
if(class(pd[,i])[1]=="logical")
pd[,i] <- as.logical(rep(wtd.table(df[,i], weight)$x[wtd.table(df[,i], weight)$sum.of.weights==max(wtd.table(df[,i], weight)$sum.of.weights)][1], lng))
}
out$Resp <- pd[1,!(colnames(pd) %in% c(dvname, at, across, by))]
out$SEs <- as.list(1:length(atlevs))
names(out$SEs) <- atlevnames
names(pd) <- names(df)
rownames(pd) <- 1:dim(pd)[1]
pd[,across] <- acrosslevs
for(a in 1:length(atlevs)){
pd[,at] <- atlevs[a]
if(!is.null(df[,at]))
class(pd[,at]) <- class(df[,at])
bylist <- as.list(bylevs)
out$Means[[a]] <- out$SEs[[a]] <- matrix(NA, length(bylevs), lng)
for(i in 1:length(bylevs)){
bylist[[i]] <- pd
bylist[[i]][,by] <- factor(rep(bylevs[i], length(bylist[[i]][,by])), levels=bylevs)
if(is.numeric(bylist[[i]][,by]))
bylist[[i]] <- pd
bylist[[i]][,by] <- rep(bylevs[i], length(bylist[[i]][,by]))
}
eachpred <- lapply(bylist, function(x) bootMer(reg, function(r) predict(r, newdata=x, type=type, re.form=NA), nsim=nsim))
means <- t(sapply(eachpred, function(x) x$t0))
out$Means[[a]] <- as.matrix(means)
ses <- t(sapply(eachpred, function(x) apply(x$t, 2, function(g) sd(g))))
out$SEs[[a]] <- as.matrix(ses)
try(rownames(out$Means[[a]]) <- rownames(out$SEs[[a]]) <- bylevnames)
try(colnames(out$Means[[a]]) <- colnames(out$SEs[[a]]) <- acclevnames)
}
}
if(approach=="population"){
pd <- df
for(a in 1:length(atlevs)){
out$Means[[a]] <- matrix(NA, length(bylevs), length(acrosslevs))
rownames(out$Means[[a]]) <- bylevs
colnames(out$Means[[a]]) <- acrosslevs
for(b in 1:length(bylevs)){
for(c in 1:length(acrosslevs)){
pdn <- pd
pdn[,across] <- acrosslevs[c]
pdn[,by] <- bylevs[b]
pdn[,at] <- atlevs[a]
out$Means[[a]][b,c] <- wtd.mean(predict(reg, newdata=pdn, type=type), weights = weight)
}
}
try(rownames(out$Means[[a]]) <- bylevnames)
try(colnames(out$Means[[a]]) <- acclevnames)
}
}
if(approach=="by"){
pd <- df
for(a in atlevs){
out$Means[[a]] <- matrix(NA, length(bylevs), length(acrosslevs))
rownames(out$Means[[a]]) <- bylevs
colnames(out$Means[[a]]) <- acrosslevs
for(b in 1:length(bylevs)){
for(c in 1:length(acrosslevs)){
pdn <- pd[pd[,by]==bylevs[b],]
pdn[,across] <- acrosslevs[c]
pdn[,at] <- atlevs[a]
out$Means[[a]][b,c] <- wtd.mean(predict(reg, newdata=pdn, type=type), weights = weight[pd[,by]==bylevs[b]])
}
}
try(rownames(out$Means[[a]]) <- bylevnames)
try(colnames(out$Means[[a]]) <- acclevnames)
}
}
if(approach=="at"){
pd <- df
for(a in atlevs){
out$Means[[a]] <- matrix(NA, length(bylevs), length(acrosslevs))
rownames(out$Means[[a]]) <- bylevs
colnames(out$Means[[a]]) <- acrosslevs
for(b in bylevs){
for(c in acrosslevs){
pdn <- pd[pd[,at]==atlevs[a],]
pdn[,across] <- acrosslevs[c]
pdn[,by] <- bylevs[b]
out$Means[[a]][b,c] <- wtd.mean(predict(reg, newdata=pdn, type=type), weights = weight[pd[,at]==bylevs[a]])
}
}
try(rownames(out$Means[[a]]) <- bylevnames)
try(colnames(out$Means[[a]]) <- acclevnames)
}
}
if(approach=="atby"){
pd <- df
for(a in atlevs){
out$Means[[a]] <- matrix(NA, length(bylevs), length(acrosslevs))
for(b in bylevs){
for(c in acrosslevs){
pdn <- pd[pd[,at]==a & pd[,by]==b]
pdn[,across] <- c
out$Means[[a]][b,c] <- wtd.mean(predict(reg, newdata=x, type=type), weights = weight[pd[,by]==bylevs[b] & pd[,at]==bylevs[a]])
}
}
try(rownames(out$Means[[a]]) <- bylevnames)
try(colnames(out$Means[[a]]) <- acclevnames)
}
}
class(out) <- "interactpreds"
out
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.