Nothing
test_that("Two class", {
lst <- data_altman()
pathology <- lst$pathology
path_tbl <- lst$path_tbl
expect_equal(
sens(pathology, truth = "pathology", estimate = "scan")[[".estimate"]],
231 / 258
)
expect_equal(
sens(pathology, estimate = scan, truth = pathology)[[".estimate"]],
231 / 258
)
expect_equal(
sens(pathology, pathology, scan)[[".estimate"]],
231 / 258
)
expect_equal(
sens(path_tbl)[[".estimate"]],
231 / 258
)
expect_equal(
sens(pathology, truth = pathology, estimate = "scan_na")[[".estimate"]],
230 / 256
)
expect_equal(
sens(as.matrix(path_tbl))[[".estimate"]],
231 / 258
)
expect_equal(
sens(pathology, pathology, scan_na, na_rm = FALSE)[[".estimate"]],
NA_real_
)
})
test_that("`event_level = 'second'` works", {
lst <- data_altman()
df <- lst$pathology
df_rev <- df
df_rev$pathology <- stats::relevel(df_rev$pathology, "norm")
df_rev$scan <- stats::relevel(df_rev$scan, "norm")
expect_equal(
sens_vec(df$pathology, df$scan),
sens_vec(df_rev$pathology, df_rev$scan, event_level = "second")
)
})
# ------------------------------------------------------------------------------
test_that("Three class", {
multi_ex <- data_three_by_three()
micro <- data_three_by_three_micro()
# sens = recall
expect_equal(
sens(multi_ex, estimator = "macro")[[".estimate"]],
macro_metric(recall_binary)
)
expect_equal(
sens(multi_ex, estimator = "macro_weighted")[[".estimate"]],
macro_weighted_metric(recall_binary)
)
expect_equal(
sens(multi_ex, estimator = "micro")[[".estimate"]],
with(micro, sum(tp) / sum(tp + fp))
)
})
# ------------------------------------------------------------------------------
test_that("Binary `sens()` returns `NA` with a warning when undefined (tp + fn = 0) (#98)", {
levels <- c("a", "b")
truth <- factor(c("b", "b"), levels = levels)
estimate <- factor(c("a", "b"), levels = levels)
expect_snapshot(out <- sens_vec(truth, estimate))
expect_identical(out, NA_real_)
})
test_that("Multiclass `sens()` returns averaged value with `NA`s removed + a warning when undefined (tp + fn = 0) (#98)", {
levels <- c("a", "b", "c", "d")
# When `d` is the event we get sens = 0.5 = (tp = 1, fn = 1)
# When `a` is the event we get sens = 1 = (tp = 1, fn = 0)
# When `b` is the event we get a warning = NA = (tp = 0, fn = 0)
# When `c` is the event we get a warning = NA = (tp = 0, fn = 0)
truth <- factor(c("a", "d", "d"), levels = levels)
estimate <- factor(c("a", "d", "c"), levels = levels)
expect_snapshot(out <- sens_vec(truth, estimate))
expect_identical(out, 0.75)
})
test_that("`NA` is still returned if there are some undefined sens values but `na.rm = FALSE`", {
levels <- c("a", "b", "c", "d")
truth <- factor(c("a", "d", "d"), levels = levels)
estimate <- factor(c("a", NA, "c"), levels = levels)
expect_equal(sens_vec(truth, estimate, na_rm = FALSE), NA_real_)
expect_warning(sens_vec(truth, estimate, na_rm = FALSE), NA)
})
# ------------------------------------------------------------------------------
test_that("Two class - sklearn equivalent", {
# Same as recall
py_res <- read_pydata("py-recall")
r_metric <- sens
expect_equal(
r_metric(two_class_example, truth, predicted)[[".estimate"]],
py_res$binary
)
})
test_that("Multi class - sklearn equivalent", {
# Same as recall
py_res <- read_pydata("py-recall")
r_metric <- sens
expect_equal(
r_metric(hpc_cv, obs, pred)[[".estimate"]],
py_res$macro
)
expect_equal(
r_metric(hpc_cv, obs, pred, "micro")[[".estimate"]],
py_res$micro
)
expect_equal(
r_metric(hpc_cv, obs, pred, "macro_weighted")[[".estimate"]],
py_res$weighted
)
})
test_that("Two class weighted - sklearn equivalent", {
# Same as recall
py_res <- read_pydata("py-recall")
r_metric <- sens
two_class_example$weights <- read_weights_two_class_example()
expect_equal(
r_metric(two_class_example, truth, predicted, case_weights = weights)[[".estimate"]],
py_res$case_weight$binary
)
})
test_that("Multi class weighted - sklearn equivalent", {
# Same as recall
py_res <- read_pydata("py-recall")
r_metric <- sens
hpc_cv$weights <- read_weights_hpc_cv()
expect_equal(
r_metric(hpc_cv, obs, pred, case_weights = weights)[[".estimate"]],
py_res$case_weight$macro
)
expect_equal(
r_metric(hpc_cv, obs, pred, estimator = "micro", case_weights = weights)[[".estimate"]],
py_res$case_weight$micro
)
expect_equal(
r_metric(hpc_cv, obs, pred, estimator = "macro_weighted", case_weights = weights)[[".estimate"]],
py_res$case_weight$weighted
)
})
# ------------------------------------------------------------------------------
test_that("`sensitivity()` has a metric name unique to it (#232)", {
lst <- data_altman()
pathology <- lst$pathology
path_tbl <- lst$path_tbl
expect_identical(
sens(pathology, truth = "pathology", estimate = "scan")[[".metric"]],
"sens"
)
expect_identical(
sensitivity(pathology, truth = "pathology", estimate = "scan")[[".metric"]],
"sensitivity"
)
expect_identical(
sens(path_tbl)[[".metric"]],
"sens"
)
expect_identical(
sensitivity(path_tbl)[[".metric"]],
"sensitivity"
)
})
test_that("works with hardhat case weights", {
lst <- data_altman()
df <- lst$pathology
imp_wgt <- hardhat::importance_weights(seq_len(nrow(df)))
freq_wgt <- hardhat::frequency_weights(seq_len(nrow(df)))
expect_no_error(
sensitivity_vec(df$pathology, df$scan, case_weights = imp_wgt)
)
expect_no_error(
sensitivity_vec(df$pathology, df$scan, case_weights = freq_wgt)
)
})
test_that("work with class_pred input", {
skip_if_not_installed("probably")
cp_truth <- probably::as_class_pred(two_class_example$truth, which = 1)
cp_estimate <- probably::as_class_pred(two_class_example$predicted, which = 2)
fct_truth <- two_class_example$truth
fct_truth[1] <- NA
fct_estimate <- two_class_example$predicted
fct_estimate[2] <- NA
expect_identical(
sensitivity_vec(fct_truth, cp_estimate),
sensitivity_vec(fct_truth, fct_estimate)
)
expect_identical(
sensitivity_vec(fct_truth, cp_estimate, na_rm = FALSE),
NA_real_
)
expect_snapshot(
error = TRUE,
sensitivity_vec(cp_truth, cp_estimate)
)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.