Nothing
test_that("Two class", {
lst <- data_altman()
pathology <- lst$pathology
path_tbl <- lst$path_tbl
expect_equal(
spec(pathology, truth = "pathology", estimate = "scan")[[".estimate"]],
54 / 86
)
expect_equal(
spec(path_tbl)[[".estimate"]],
54 / 86
)
expect_equal(
spec(pathology, truth = pathology, estimate = "scan_na")[[".estimate"]],
53 / 85
)
expect_equal(
spec(as.matrix(path_tbl))[[".estimate"]],
54 / 86
)
})
test_that("`event_level = 'second'` works", {
lst <- data_altman()
df <- lst$pathology
df_rev <- df
df_rev$pathology <- stats::relevel(df_rev$pathology, "norm")
df_rev$scan <- stats::relevel(df_rev$scan, "norm")
expect_equal(
spec_vec(df$pathology, df$scan),
spec_vec(df_rev$pathology, df_rev$scan, event_level = "second")
)
})
# ------------------------------------------------------------------------------
test_that("Three class", {
multi_ex <- data_three_by_three()
micro <- data_three_by_three_micro()
expect_equal(
spec(multi_ex, estimator = "macro")[[".estimate"]],
macro_metric(spec_binary)
)
expect_equal(
spec(multi_ex, estimator = "macro_weighted")[[".estimate"]],
macro_weighted_metric(spec_binary)
)
expect_equal(
spec(multi_ex, estimator = "micro")[[".estimate"]],
with(micro, sum(tn) / sum(tn + fn))
)
})
# ------------------------------------------------------------------------------
test_that("Binary `spec()` returns `NA` with a warning when undefined (tn + fp = 0) (#98)", {
levels <- c("a", "b")
truth <- factor(c("a", "a"), levels = levels)
estimate <- factor(c("a", "b"), levels = levels)
expect_snapshot(out <- spec_vec(truth, estimate))
expect_identical(out, NA_real_)
})
test_that("Multiclass `spec()` returns averaged value with `NA`s removed + a warning when undefined (tn + fp = 0) (#98)", {
levels <- c("a", "b", "c", "d")
# When `d` is the event we get spec = 3/3 = (tn = 3, fp = 0)
# When `a` is the event we get spec = NA = (tn = 0, fp = 0)
# When `b` is the event we get a warning = 1/3 = (tn = 1, fp = 2)
# When `c` is the event we get a warning = 3/3 = (tn = 3, fp = 0)
truth <- factor(c("a", "a", "a"), levels = levels)
estimate <- factor(c("a", "b", "b"), levels = levels)
expect_snapshot(out <- spec_vec(truth, estimate))
expect_equal(out, (1 + 1 / 3 + 1) / 3, tolerance = 0.000001)
})
test_that("`NA` is still returned if there are some undefined spec values but `na.rm = FALSE`", {
levels <- c("a", "b")
truth <- factor(c("a", "a"), levels = levels)
estimate <- factor(c("a", NA), levels = levels)
expect_equal(spec_vec(truth, estimate, na_rm = FALSE), NA_real_)
expect_warning(spec_vec(truth, estimate, na_rm = FALSE), NA)
})
# ------------------------------------------------------------------------------
test_that("two class with case weights is correct", {
df <- data.frame(
truth = factor(c("x", "y", "y", "y"), levels = c("x", "y")),
estimate = factor(c("x", "y", "y", "x"), levels = c("x", "y")),
case_weights = c(1L, 1L, 2L, 3L)
)
expect_identical(
spec(df, truth, estimate, case_weights = case_weights)[[".estimate"]],
1 / 2
)
expect_identical(
specificity(df, truth, estimate, case_weights = case_weights)[[".estimate"]],
1 / 2
)
})
# ------------------------------------------------------------------------------
test_that("`specificity()` has a metric name unique to it (#232)", {
lst <- data_altman()
pathology <- lst$pathology
path_tbl <- lst$path_tbl
expect_identical(
spec(pathology, truth = "pathology", estimate = "scan")[[".metric"]],
"spec"
)
expect_identical(
specificity(pathology, truth = "pathology", estimate = "scan")[[".metric"]],
"specificity"
)
expect_identical(
spec(path_tbl)[[".metric"]],
"spec"
)
expect_identical(
specificity(path_tbl)[[".metric"]],
"specificity"
)
})
test_that("works with hardhat case weights", {
lst <- data_altman()
df <- lst$pathology
imp_wgt <- hardhat::importance_weights(seq_len(nrow(df)))
freq_wgt <- hardhat::frequency_weights(seq_len(nrow(df)))
expect_no_error(
specificity_vec(df$pathology, df$scan, case_weights = imp_wgt)
)
expect_no_error(
specificity_vec(df$pathology, df$scan, case_weights = freq_wgt)
)
})
test_that("work with class_pred input", {
skip_if_not_installed("probably")
cp_truth <- probably::as_class_pred(two_class_example$truth, which = 1)
cp_estimate <- probably::as_class_pred(two_class_example$predicted, which = 2)
fct_truth <- two_class_example$truth
fct_truth[1] <- NA
fct_estimate <- two_class_example$predicted
fct_estimate[2] <- NA
expect_identical(
specificity_vec(fct_truth, cp_estimate),
specificity_vec(fct_truth, fct_estimate)
)
expect_identical(
specificity_vec(fct_truth, cp_estimate, na_rm = FALSE),
NA_real_
)
expect_snapshot(
error = TRUE,
specificity_vec(cp_truth, cp_estimate)
)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.