# Copyright 2020 Observational Health Data Sciences and Informatics
#
# This file is part of treatmentCycleExtraction
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#' Algorithm for chemotherapy record extraction
#' @param targetConceptIds
#' @param targetSubjectId
#' @param primaryConceptRecords
#' @param secondaryConceptRecords
#' @param excludingConceptRecords
#' @param drugInspectionDate
#' @param secondaryConceptIdList
#' @param excludingConceptIdList
#' @param gapDateBetweenCycle
#' @param gapDateBefore
#' @param gapDateAfter
#' @param regimenConceptId
#' @param connection
#' @param cohortTable
#' @param includeDescendant
#' @param outofCohortPeriod
#' @param cdmDatabaseSchema
#' @param cohortDatabaseSchema
#' @param targetCohortId
#' @param connectionDetails
#' @export
DrugExposureInCohort <- function(targetConceptIds,
connectionDetails,
cohortTable,
includeDescendant = TRUE,
outofCohortPeriod = TRUE,
cdmDatabaseSchema,
cohortDatabaseSchema,
targetCohortId
){
connection <- DatabaseConnector::connect(connectionDetails = connectionDetails)
pathToSql <- system.file("sql/sql_server", "DrugExposureInCohort.sql", package = "treatmentCycleExtraction")
sql <- SqlRender::readSql(pathToSql)
sql <- SqlRender::render(sql,
cdm_database_schema = cdmDatabaseSchema,
cohort_table = cohortTable,
include_descendant = includeDescendant,
out_of_cohort_period = outofCohortPeriod,
result_database_schema = cohortDatabaseSchema,
target_concept_Ids = targetConceptIds,
target_cohort_Id = targetCohortId)
sql <- SqlRender::translate(sql, targetDialect = attr(connection,"dbms"))
result <- DatabaseConnector::querySql(connection, sql)
colnames(result) <- SqlRender::snakeCaseToCamelCase(colnames(result))
DatabaseConnector::disconnect(connection)
return(result)
}
##########################
## Combination criteria ##
##########################
#' @export
drugRecordExamination<-function(targetSubjectId,
primaryConceptRecords,
secondaryConceptRecords,
excludingConceptRecords,
drugInspectionDate,
secondaryConceptIdList,
excludingConceptIdList
){
## Dispense date of primary drug is index date
## Generate index date list in one person
if (!nrow(primaryConceptRecords)==0){
indexDateList <- primaryConceptRecords %>% filter(subjectId == targetSubjectId)
## Checking all drug condition
### The drug observation period is from the index date to the date as long as drug Observation Date.
### Secondary drug should be in the range of drug observation period and eliminatory drug should not be in.
if(length(secondaryConceptIdList)!=0){
secondaryConceptRecordsOneSubject <- lapply(1:length(secondaryConceptIdList),function(i){secondaryConceptRecords[[i]] %>% filter (subjectId == targetSubjectId)})
}
if(length(excludingConceptIdList)!=0){
excludingConceptRecordsOneSubject <- excludingConceptRecords %>% filter(subjectId == targetSubjectId)}
drugConditionPassedDate <- c()
drugConditionPassedStartDate <- c()
drugConditionPassedEndDate <- c()
eventItem <- c()
for(x in 1:nrow(indexDateList)){
inResult <- list()
endDateList <- list()
if(length(secondaryConceptIdList)!=0){
for(i in 1:length(secondaryConceptIdList)){
secondaryConceptInPeriod <- dplyr::filter(secondaryConceptRecordsOneSubject[[i]],between(drugExposureStartDate,indexDateList[x,3]-drugInspectionDate,indexDateList[x,3]+drugInspectionDate))
inResult<-append(inResult,list(secondaryConceptInPeriod[1,3]))
if (length(secondaryConceptInPeriod$drugExposureEndDate)!=0){
endDateList<-append(endDateList,list(unique(max(secondaryConceptInPeriod$drugExposureEndDate,na.rm =TRUE))))}
}
}else{secondaryConceptInPeriod <- NULL}
if(length(excludingConceptIdList)!=0){
excludingConceptInPeriod <- dplyr::filter(excludingConceptRecordsOneSubject,between(drugExposureStartDate,indexDateList[x,3]-drugInspectionDate,indexDateList[x,3]+drugInspectionDate))
outResult <- excludingConceptInPeriod[1,3]
}else{
outResult<-NA}
if(sum(is.na(inResult))==0 & sum(!is.na(outResult))==0){
if(!is.null(secondaryConceptInPeriod)){
drugConditionPassedStartDate[x]<- min(c(indexDateList[x,3],secondaryConceptInPeriod$drugExposureStartDate),na.rm =TRUE)
targetCycleItemSec <- paste0(secondaryConceptInPeriod$drugExposureId,collapse = '_')
targetCycleItemPri <- paste0(indexDateList[x,5],collapse = '_')
targetCycleItem<- paste0(c(targetCycleItemSec,targetCycleItemPri),collapse = '_')
}else
{drugConditionPassedStartDate[x]<- indexDateList[x,3]
targetCycleItem<- paste0(indexDateList[x,5],collapse = '_')}
eventItem[x] <- targetCycleItem
if(!is.null(drugConditionPassedStartDate)){
drugConditionPassedEndDate[x]<- max(c(indexDateList[x,3],unlist(endDateList)),na.rm =TRUE)
}
}
}
if(!is.null(drugConditionPassedStartDate)){
drugConditionPassedDate <- data.frame(drugConditionPassedStartDate,drugConditionPassedEndDate,eventItem)
drugConditionPassedDate <- na.omit(drugConditionPassedDate)
drugConditionPassedDate <- drugConditionPassedDate[c(order(drugConditionPassedDate$drugConditionPassedStartDate)),]
drugConditionPassedDate <- unique(drugConditionPassedDate)
rownames(drugConditionPassedDate) <- NULL
}else{drugConditionPassedDate <- data.frame()}
}else{drugConditionPassedDate<-data.frame()}
return(drugConditionPassedDate)
}
################################
## Consecutive cycle criteria ##
################################
#' @export
gapDateExamination<-function(targetSubjectId,
primaryConceptRecords,
secondaryConceptRecords,
excludingConceptRecords,
drugInspectionDate,
secondaryConceptIdList,
excludingConceptIdList,
gapDateBetweenCycle,
gapDateBefore,
gapDateAfter,
regimenConceptId){
drugPassed <- drugRecordExamination(targetSubjectId=targetSubjectId,
primaryConceptRecords=primaryConceptRecords,
secondaryConceptRecords=secondaryConceptRecords,
excludingConceptRecords=excludingConceptRecords,
drugInspectionDate=drugInspectionDate,
secondaryConceptIdList=secondaryConceptIdList,
excludingConceptIdList=excludingConceptIdList)
if (!nrow(drugPassed)==0){
drugConditionPassedStartDate<-drugPassed$drugConditionPassedStartDate
drugConditionPassedDate<-as.data.frame(drugConditionPassedStartDate)
drugConditionPassedDate$lagdate <- data.table::shift(drugConditionPassedDate$drugConditionPassedStartDate,fill = drugConditionPassedDate$drugConditionPassedStartDate[1])
drugConditionPassedDate$datediff <-drugConditionPassedDate$drugConditionPassedStartDate-drugConditionPassedDate$lagdate
drugConditionPassedDate$datediff[1] <- 'first'
drugConditionPassedStartDate<-subset(drugConditionPassedDate,datediff >= gapDateBetweenCycle-gapDateBefore|datediff == 'first')$drugConditionPassedStartDate
drugConditionPassedDate<-as.data.frame(drugConditionPassedStartDate)
## Generate first date list of cycle. From very first record of date list, until next cycle date cannot be found.
gapDatePassedDate <- list()
gapDatePassedDate[[1]]<-drugConditionPassedDate[1,]
x=1
repeat{
i=1
repeat{
minimumGapVariationDate <- gapDatePassedDate[[x]][i]+gapDateBetweenCycle-gapDateBefore
maximumGapVariationDate <- gapDatePassedDate[[x]][i]+gapDateBetweenCycle+gapDateAfter
gapDatePassedDate[[x]][i+1] <- dplyr::filter(drugConditionPassedDate,between(drugConditionPassedDate$`drugConditionPassedStartDate`,minimumGapVariationDate,maximumGapVariationDate))[1,]
if(is.na(gapDatePassedDate[[x]][i+1]))
{gapDatePassedDate[[x+1]]<-subset(drugConditionPassedDate,!drugConditionPassedDate$`drugConditionPassedStartDate` %in% unlist(gapDatePassedDate))[1,]}
if(is.na(gapDatePassedDate[[x]][i+1])) break
i = i+1
}
if(is.na(gapDatePassedDate[[x+1]])) break
x = x+1}
gapDatePassedDate[[length(gapDatePassedDate)]] <- NULL
## Generate result of cycle extraction
subjectCycleList<-lapply(1:length(gapDatePassedDate),function(i){
cycleStartDate <- gapDatePassedDate[[i]]
subjectId <-c(targetSubjectId)
cycleNum <- c(seq_along(cycleStartDate))
REGIMEN_CONCEPT_ID <- regimenConceptId
cycle <- data.frame(subjectId,cycleStartDate,cycleNum,regimenConceptId)
drugPassed<-drugPassed %>% group_by(drugConditionPassedStartDate) %>% slice(which.max(drugConditionPassedEndDate))
cycle <- dplyr::left_join(cycle,drugPassed, by =c("cycleStartDate" = "drugConditionPassedStartDate"))
names(cycle) <- c('SUBJECT_ID','CYCLE_START_DATE','CYCLE_NUM','REGIMEN_CONCEPT_ID','CYCLE_END_DATE','EVENT_ITEM')
treatmentLineStartDate<-cycle %>% slice(which.min(CYCLE_START_DATE)) %>% select(CYCLE_START_DATE)
treatmentLineEndDate<-cycle %>% slice(which.max(CYCLE_END_DATE)) %>% select(CYCLE_END_DATE)
treatmentLineNumberPadding <- 0
treatmentLineEventItemPadding <- '1_1'
treatmentLine <- data.frame(subjectId,treatmentLineStartDate,treatmentLineNumberPadding,REGIMEN_CONCEPT_ID,treatmentLineEndDate,treatmentLineEventItemPadding)
names(treatmentLine) <- c('SUBJECT_ID','CYCLE_START_DATE','CYCLE_NUM','REGIMEN_CONCEPT_ID','CYCLE_END_DATE','EVENT_ITEM')
cycle<-rbind(cycle,treatmentLine)
return(cycle)
}
)
subjectCycleList<- data.table::rbindlist(subjectCycleList)}else{
SUBJECT_ID<-c(NA)
CYCLE_START_DATE <- c(NA)
CYCLE_NUM<- c(NA)
CYCLE_END_DATE <- c(NA)
EVENT_ITEM <- c(NA)
REGIMEN_CONCEPT_ID <- c(NA)
subjectCycleList <- data.frame(SUBJECT_ID,CYCLE_START_DATE,CYCLE_NUM,REGIMEN_CONCEPT_ID,CYCLE_END_DATE,EVENT_ITEM)
}
return(subjectCycleList)}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.