#' @name lp_lin
#' @title Compute linear impulse responses
#' @description Compute linear impulse responses with local projections by Jordà (2005).
#'
#' @param endog_data A \link{data.frame}, containing the endogenous variables for the VAR. The Cholesky decomposition is based on the
#' column order.
#' @param lags_criterion NaN or character. NaN (default) means that the number of lags
#' has to be given at \emph{lags_endog_lin}. The character specifies the lag length criterion ('AICc', 'AIC' or 'BIC').
#' @param lags_endog_lin NaN or integer. NaN if lag length criterion is used. Integer for number of lags for \emph{endog_data}.
#' @param max_lags NaN or integer. Maximum number of lags if \emph{lags_criterion} is given. NaN (default) otherwise.
#' @param trend Integer. No trend = 0 , include trend = 1, include trend and quadratic trend = 2.
#' @param shock_type Integer. Standard deviation shock = 0, unit shock = 1.
#' @param confint Double. Width of confidence bands. 68\% = 1; 90\% = 1.65; 95\% = 1.96.
#' @param use_nw Boolean. Use Newey-West (1987) standard errors for impulse responses? TRUE (default) or FALSE.
#' @param nw_lag Integer. Specifies the maximum lag with positive weight for the Newey-West estimator. If set to NULL (default), the lag increases with
#' with the number of horizon.
#' @param nw_prewhite Boolean. Should the estimators be pre-whitened? TRUE or FALSE (default).
#' @param adjust_se Boolen. Should a finite sample adjsutment be made to the covariance matrix estimators? TRUE or FALSE (default).
#' @param hor Integer. Number of horizons for impulse responses.
#'@param exog_data A \link{data.frame}, containing exogenous variables for the VAR. The row length has to be the same as \emph{endog_data}.
#' Lag lengths for exogenous variables have to be given and will not be determined via a lag length criterion.
#' @param lags_exog NULL or Integer. Integer for the number of lags for the exogenous data. The value cannot be 0. If you want to
#' to include exogenous data with contemporaneous impact use \emph{contemp_data}.
#' @param contemp_data A \link{data.frame}, containing exogenous data with contemporaneous impact. This data will not be lagged.
#' The row length has to be the same as \emph{endog_data}.
#' @param num_cores NULL or Integer. The number of cores to use for the estimation. If NULL, the function will
#' use the maximum number of cores minus one.
#'
#' @seealso \url{https://adaemmerp.github.io/lpirfs/README_docs.html}
#'
#' @return A list containing:
#'
#'
#'\item{irf_lin_mean}{A three 3D \link{array}, containing all impulse responses for all endogenous variables.
#' The last dimension denotes the shock variable. The row in each matrix
#' gives the responses of the \emph{ith} variable, ordered as in endog_data. The columns denote the horizons.
#' For example, if \emph{results_lin} contains the list with results, results_lin$irf_lin_mean[, , 1] returns a KXH matrix,
#' where K is the number of variables and H the number of horizons. '1' is the shock variable, corresponding to the
#' first variable in \emph{endog_data}.}
#'
#'\item{irf_lin_low}{A three 3D \link{array} containing all lower confidence bands of the responses,
#' based on robust standard errors by Newey and West (1987). Properties are equal to irf_lin_mean.}
#'
#'\item{irf_lin_up}{A three 3D \link{array} containing all upper confidence bands of the responses,
#' based on robust standard errors by Newey and West (1987). Properties are equal to \emph{irf_lin_mean}.}
#'
#'\item{diagnostic_list}{A list OLS diagnostics. To see everything you can simply use summary() or results$diagnostic_list. The first entry
#' the shock variable. The rows of each shown matrix then denotes the endogenous variable that reacts to the shock.}
#'
#'\item{specs}{A list with properties of \emph{endog_data} for the plot function. It also contains
#' lagged data (y_lin and x_lin) used for the irf estimations, and the selected lag lengths when an information criterion has been used.}
#'
#' @export
#' @references
#' Akaike, H. (1974). "A new look at the statistical model identification", \emph{IEEE Transactions on Automatic Control}, 19 (6): 716–723.
#'
#' Hurvich, C. M., and Tsai, C.-L. (1989), "Regression and time series model selection in small samples",
#' \emph{Biometrika}, 76(2): 297–307
#'
#' Jordà, Ò. (2005). "Estimation and Inference of Impulse Responses by Local Projections."
#' \emph{American Economic Review}, 95 (1): 161-182.
#'
#' Newey, W.K., and West, K.D. (1987). “A Simple, Positive-Definite, Heteroskedasticity and
#' Autocorrelation Consistent Covariance Matrix.” \emph{Econometrica}, 55: 703–708.
#'
#' Schwarz, Gideon E. (1978). "Estimating the dimension of a model", \emph{Annals of Statistics}, 6 (2): 461–464.
#'
#' @author Philipp Adämmer
#' @import foreach
#' @examples
#'\donttest{
#' ## Example without exogenous variables
#'
#'# Load package
#' library(lpirfs)
#'
#'# Load (endogenous) data
#' endog_data <- interest_rules_var_data
#'
#'# Estimate linear model
#' results_lin <- lp_lin(endog_data,
#' lags_endog_lin = 4,
#' trend = 0,
#' shock_type = 1,
#' confint = 1.96,
#' hor = 12)
#'
#'# Show all impule responses
#'# Compare with Figure 5 in Jordà (2005)
#' plot(results_lin)
#'
#'# Make individual plots
#' linear_plots <- plot_lin(results_lin)
#'
#'# Show single plots
#' # * The first element of 'linear_plots' shows the response of the first
#' # variable (GDP_gap) to a shock in the first variable (GDP_gap).
#' # * The second element of 'linear_plots' shows the response of the first
#' # variable (GDP_gap) to a shock in the second variable (inflation).
#' # * ...
#'
#' linear_plots[[1]]
#' linear_plots[[2]]
#'
#'
#'# Show diagnostics. The first element correponds to the first shock variable.
#' summary(results_lin)
#'
#'
#' ## Example with exogenous variables ##
#'
#'# Load (endogenous) data
#' endog_data <- interest_rules_var_data
#'
#'# Create exogenous data and data with contemporaneous impact (for illustration purposes only)
#' exog_data <- endog_data$GDP_gap*endog_data$Infl*endog_data$FF + rnorm(dim(endog_data)[1])
#' contemp_data <- endog_data$GDP_gap*endog_data$Infl*endog_data$FF + rnorm(dim(endog_data)[1])
#'
#'# Exogenous data has to be a data.frame
#' exog_data <- data.frame(xx = exog_data )
#' contemp_data <- data.frame(cc = contemp_data)
#'
#'# Estimate linear model
#' results_lin <- lp_lin(endog_data,
#' lags_endog_lin = 4,
#' trend = 0,
#' shock_type = 1,
#' confint = 1.96,
#' hor = 12,
#' exog_data = exog_data,
#' lags_exog = 4,
#' contemp_data = contemp_data)
#'
#'# Show all impulse responses
#' plot(results_lin)
#'
#'# Show diagnostics. The first element correponds to the first shock variable.
#' summary(results_lin)
#'
#' }
lp_lin <- function(endog_data,
lags_endog_lin = NULL,
lags_criterion = NaN,
max_lags = NaN,
trend = NULL,
shock_type = NULL,
confint = NULL,
use_nw = TRUE,
nw_lag = NULL,
nw_prewhite = FALSE,
adjust_se = FALSE,
hor = NULL,
exog_data = NULL,
lags_exog = NULL,
contemp_data = NULL,
num_cores = 1){
# Create list to store inputs
specs <- list()
# Specify inputs
specs$lags_endog_lin <- lags_endog_lin
specs$lags_criterion <- lags_criterion
specs$max_lags <- max_lags
specs$trend <- trend
specs$shock_type <- shock_type
specs$confint <- confint
specs$hor <- hor
specs$exog_data <- exog_data
specs$lags_exog <- lags_exog
specs$use_nw <- use_nw
specs$nw_prewhite <- nw_prewhite
specs$adjust_se <- adjust_se
specs$nw_lag <- nw_lag
# Set 2SLS option to FALSE
specs$use_twosls <- FALSE
# Add 'contempranoeus' as NULL for data construction
specs$contemp_data <- contemp_data
# Set model type for plot function
specs$model_type <- 0
# Check whether data is a data.frame()
if(!(is.data.frame(endog_data))){
stop('The data has to be a data.frame().')
}
# Check whether 'trend' is given
if(is.null(specs$trend)){
stop('Please specify whether and which type of trend to include.')
}
# Check whether 'shock_type' is given
if(is.null(specs$shock_type)){
stop('Please specify which type of shock to use.')
}
# Check whether width for confidence intervals is given
if(is.null(specs$confint)){
stop('Please specify a value for the width of the confidence bands.')
}
# Check whether number of horizons is given
if(is.null(specs$hor)){
stop('Please specify the number of horizons.')
}
# Check whether wrong lag length criterion is given
if(!(is.nan(specs$lags_criterion) | specs$lags_criterion == 'AICc'|
specs$lags_criterion == 'AIC' | specs$lags_criterion == 'BIC')){
stop('Possible lag length criteria are AICc, AIC or BIC or NaN if lag length is specified.')
}
# Check whether lags criterion and maximum number of lags are given
if((is.character(specs$lags_criterion)) &
(!is.na(specs$lags_endog_lin))){
stop('You can not provide a lag criterion (AICc, AIC or BIC) and a fixed number of lags.')
}
# Check whether no lag length criterion and number of lags are given
if((is.na(specs$lags_criterion)) &
(is.na(specs$lags_endog_lin))){
stop('You have to at least provide a lag criterion (AICc, AIC or BIC) or a fixed number of lags.')
}
# Check whether maximum number of lags is given for lag length criterion
if((is.character(specs$lags_criterion)) &
(is.na(specs$max_lags) )){
stop('Please provide a maximum number of lags for the lag length criterion.')
}
# Check whether values for horizons are correct
if(!(specs$hor > 0) | is.nan(specs$hor) | !(specs$hor %% 1 == 0)){
stop('The number of horizons has to be an integer and > 0.')
}
# Check whether lags for linear model are integers
if(is.numeric(specs$lags_endog_lin) & !is.nan(specs$lags_endog_lin)){
if(!(specs$lags_endog_lin %% 1 == 0) | specs$lags_endog_lin < 0){
stop('The numbers of lags have to be a positive integer.')
}
} else {}
# Check whether trend is correctly specified
if(!(specs$trend %in% c(0,1,2))){
stop('For trend please enter 0 = no trend, 1 = trend, 2 = trend and quadratic trend.')
}
# Check whether shock type is correctly specified
if(!(specs$shock_type %in% c(0,1))){
stop('The shock_type has to be 0 = standard deviation shock or 1 = unit shock.')
}
# Check whether width of confidence bands is >=0
if(!(specs$confint >=0)){
stop('The width of the confidence bands has to be >=0.')
}
# Check whether maximum lag length is given when no criterion is given
if(!is.character(specs$lags_criterion) & is.numeric(specs$max_lags) & !is.nan(specs$max_lags)){
stop('The maximum number of lags is only used if you provide a lag length criterion.')
}
# Check whether exogenous data is a data.frame
if(!is.null(specs$exog_data) & !is.data.frame(specs$exog_data)){
stop('Exogenous data has to be a data.frame.')
}
# Check whether lag length for exogenous data is given
if(!is.null(specs$exog_data) & is.null(specs$lags_exog)){
stop('Please provide a lag length for the exogenous data.')
}
# Check whether lags_exog < 1
if(!is.null(lags_exog)){
if(lags_exog < 1){
stop("'lags_exog' cannot be 0 or negative. If you want to include exogenous data with contemporaneous impact use 'contemp_data'.")
}
}
# Safe data frame specifications in 'specs for functions
specs$starts <- 1 # Sample Start
specs$ends <- dim(endog_data)[1] # Sample end
specs$column_names <- names(endog_data) # Name endogenous variables
specs$endog <- ncol(endog_data) # Set the number of endogenous variables
# Construct (lagged) endogenous data
data_lin <- create_lin_data(specs, endog_data)
y_lin <- data_lin[[1]]
x_lin <- data_lin[[2]]
# Save endogenous and lagged exogenous data in specs
specs$y_lin <- y_lin
specs$x_lin <- x_lin
# Construct shock matrix
d <- get_mat_chol(y_lin, x_lin, endog_data, specs)
# Matrices to store OLS parameters
b1 <- matrix(NaN, specs$endog, specs$endog)
b1_low <- matrix(NaN, specs$endog, specs$endog)
b1_up <- matrix(NaN, specs$endog, specs$endog)
# Matrices to store irfs for each horizon
irf_mean <- matrix(NaN, specs$endog, specs$hor + 1)
irf_low <- irf_mean
irf_up <- irf_mean
# 3D Arrays for all irfs
irf_lin_mean <- array(NaN, dim = c(specs$endog, specs$hor + 1, specs$endog))
irf_lin_low <- irf_lin_mean
irf_lin_up <- irf_lin_mean
# Make list to store OLS diagnostics for each horizon
diagnost_ols_each_h <- list()
# Make matrix to store OLS diagnostics for each endogenous variable k
diagnost_each_k <- matrix(NaN, specs$endog, 4)
rownames(diagnost_each_k) <- specs$column_names
colnames(diagnost_each_k) <- c("R-sqrd.", "Adj. R-sqrd.", "F-stat", " p-value")
# Make cluster?
if(is.null(num_cores)){
num_cores <- min(specs$endog, parallel::detectCores() - 1)
}
cl <- parallel::makeCluster(num_cores)
doParallel::registerDoParallel(cl)
# Decide whether lag lengths are given or have to be estimated
if(is.nan(specs$lags_criterion) == TRUE){
# Loops to estimate local projections
lin_irfs <- foreach(s = 1:specs$endog,
.packages = 'lpirfs') %dopar%{ # Accounts for the shocks
for (h in 1:(specs$hor)){ # Accounts for the horizons
# Create data
yy <- y_lin[h:dim(y_lin)[1], ]
xx <- x_lin[1:(dim(x_lin)[1] - h + 1), ]
# Set lag number for Newey-West (1987)
if(is.null(nw_lag)){
lag_nw <- h
} else {
lag_nw <- nw_lag
}
for (k in 1:specs$endog){ # Accounts for the reactions of the endogenous variables
# Get standard errors and point estimates
get_ols_vals <- lpirfs::get_std_err(yy, xx, lag_nw, k, specs)
std_err <- get_ols_vals[[1]]
b <- get_ols_vals[[2]]
# Fill coefficient matrix
b1[k, ] <- b[2:(specs$endog + 1)]
b1_low[k, ] <- b[2:(specs$endog + 1)] - std_err[2:(specs$endog + 1)]
b1_up[k, ] <- b[2:(specs$endog + 1)] + std_err[2:(specs$endog + 1)]
# Get diagnostocs for summary
get_diagnost <- lpirfs::ols_diagnost(yy[, k], xx)
diagnost_each_k[k, 1] <- get_diagnost[[3]]
diagnost_each_k[k, 2] <- get_diagnost[[4]]
diagnost_each_k[k, 3] <- get_diagnost[[5]]
diagnost_each_k[k, 4] <- stats::pf(diagnost_each_k[k, 3], get_diagnost[[6]], get_diagnost[[7]], lower.tail = F)
}
# Fill matrices with local projections
irf_mean[, h + 1] <- t(b1 %*% d[ , s])
irf_low[, h + 1] <- t(b1_low %*% d[ , s])
irf_up[, h + 1] <- t(b1_up %*% d[ , s])
# Give rownames
rownames(diagnost_each_k) <- paste("h", h, ":", specs$column_names, sep ="")
# Save full summary matrix in list for each horizon
diagnost_ols_each_h[[h]] <- diagnost_each_k
}
# Return irfs and diagnostics
return(list(irf_mean, irf_low, irf_up, diagnost_ols_each_h))
}
# List to save diagnostics
diagnostic_list <- list()
# Fill arrays with irfs
for(i in 1:specs$endog){
# Fill irfs
irf_lin_mean[, , i] <- as.matrix(do.call(rbind, lin_irfs[[i]][1]))
irf_lin_low[, , i] <- as.matrix(do.call(rbind, lin_irfs[[i]][2]))
irf_lin_up[, , i] <- as.matrix(do.call(rbind, lin_irfs[[i]][3]))
# First value of is merely the shock
irf_lin_mean[, 1, i] <- t(d[, i])
irf_lin_low[, 1, i] <- irf_lin_mean[, 1, i]
irf_lin_up[, 1, i] <- irf_lin_mean[, 1, i]
# Fill list with all OLS diagnostics
diagnostic_list[[i]] <- lin_irfs[[i]][[4]]
}
# Give names to diagnostic List
names(diagnostic_list) <- paste("Shock:", specs$column_names, sep = " ")
################################################################################
} else {
################################################################################
# Convert chosen lag criterion to number for loop
lag_crit <- switch(specs$lags_criterion,
'AICc'= 1,
'AIC' = 2,
'BIC' = 3)
# Make list to store chosen lags
chosen_lags <- list()
# Make matrix to store selected lags
chosen_lags_k <- matrix(NaN, specs$endog, 1)
# names(diagnost_each_k) <- specs$column_names
# Loops to estimate local projections.
lin_irfs <- foreach(s = 1:specs$endog,
.packages = 'lpirfs') %dopar% {
for (h in 1:specs$hor){ # Accounts for the horizon
for (k in 1:specs$endog){ # Accounts for endogenous reactions
# Find optimal lags
n_obs <- nrow(y_lin[[1]]) - h + 1 # Number of observations for model with lag one
val_criterion <- lpirfs::get_vals_lagcrit(y_lin, x_lin, lag_crit, h, k,
specs$max_lags, n_obs)
# Set optimal lag length
lag_choice <- which.min(val_criterion)
# Extract matrices based on optimal lag length
yy <- y_lin[[lag_choice]][, k]
yy <- yy[h: length(yy)]
xx <- x_lin[[lag_choice]]
xx <- xx[1:(dim(xx)[1] - h + 1),]
# Set lag number for Newey-West (1987)
if(is.null(nw_lag)){
lag_nw <- h
} else {
lag_nw <- nw_lag
}
# Get standard errors and point estimates. Set k = 1 because endogenous variable is numeric vector
get_ols_vals <- lpirfs::get_std_err(yy, xx, lag_nw, 1, specs)
std_err <- get_ols_vals[[1]]
b <- get_ols_vals[[2]]
# Fill coefficient matrix
b1[k, ] <- b[2:(specs$endog + 1)]
b1_low[k, ] <- b[2:(specs$endog + 1)] - std_err[2:(specs$endog + 1)]
b1_up[k, ] <- b[2:(specs$endog + 1)] + std_err[2:(specs$endog + 1)]
# Get diagnostics for summary
get_diagnost <- lpirfs::ols_diagnost(yy, xx)
diagnost_each_k[k, 1] <- get_diagnost[[3]]
diagnost_each_k[k, 2] <- get_diagnost[[4]]
diagnost_each_k[k, 3] <- get_diagnost[[5]]
diagnost_each_k[k, 4] <- stats::pf(diagnost_each_k[k, 3], get_diagnost[[6]], get_diagnost[[7]], lower.tail = F)
# Save chosen lag length
chosen_lags_k[k] <- lag_choice
}
# Fill matrices with local projections
irf_mean[, h + 1] <- t(b1 %*% d[ , s])
irf_low[, h + 1] <- t(b1_low %*% d[ , s])
irf_up[, h + 1] <- t(b1_up %*% d[ , s])
# Give rownames
rownames(diagnost_each_k) <- paste("h", h, ":", specs$column_names, sep ="")
# Save full summary matrix in list for each horizon
diagnost_ols_each_h[[h]] <- diagnost_each_k
chosen_lags[[h]] <- chosen_lags_k
}
# Give names to horizon
# names(diagnost_ols_each_h) <- paste("h", 1:specs$hor, sep = " ")
# names(chosen_lags) <- paste("h", 1:specs$hor, sep = " ")
return(list(irf_mean, irf_low, irf_up, diagnost_ols_each_h, chosen_lags))
}
diagnostic_list <- list()
chosen_lags_list <- list()
# Fill arrays with irfs
for(i in 1:specs$endog){
# Fill irfs
irf_lin_mean[, , i] <- as.matrix(do.call(rbind, lin_irfs[[i]][1]))
irf_lin_low[, , i] <- as.matrix(do.call(rbind, lin_irfs[[i]][2]))
irf_lin_up[, , i] <- as.matrix(do.call(rbind, lin_irfs[[i]][3]))
# First value of horizon is merely the shock
irf_lin_mean[, 1, i] <- t(d[, i])
irf_lin_low[, 1, i] <- irf_lin_mean[, 1, i]
irf_lin_up[, 1, i] <- irf_lin_mean[, 1, i]
# Fill list with all OLS diagnostics
diagnostic_list[[i]] <- lin_irfs[[i]][[4]]
chosen_lags_list[[i]] <- lin_irfs[[i]][[5]]
}
# Give names to diagnostic List
names(diagnostic_list) <- paste("Shock:", specs$column_names, sep = " ")
names(chosen_lags_list) <- paste("Shock:", specs$column_names, sep = " ")
specs$chosen_lags <- chosen_lags_list
###################################################################################################
}
# Close cluster
parallel::stopCluster(cl)
result <- list(irf_lin_mean = irf_lin_mean,
irf_lin_low = irf_lin_low,
irf_lin_up = irf_lin_up,
diagnostic_list = diagnostic_list,
specs = specs)
# Give object S3 name
class(result) <- "lpirfs_lin_obj"
return(result)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.