#' @name lp_lin_iv
#' @title Compute linear impulse responses with identified shock and/or with 2SLS
#' @description Compute linear impulse responses with identified shock and/or with 2SLS.
#' @param endog_data A \link{data.frame}, containing the values of the dependent variable(s).
#' @param shock A one column \link{data.frame}, including the variable to shock with. The row length has to be the same as \emph{endog_data}.
#' When \emph{use_twosls = TRUE}, this variable will be approximated/regressed on the instrument variable(s) given in \emph{instrum}.
#' @param cumul_mult Boolean. Estimate cumulative multipliers? TRUE or FALSE (default). If TRUE, cumulative responses
#' are estimated via: \deqn{y_{(t+h)} - y_{(t-1)},} where h = 0,..., H-1.
#' This option is only available for \emph{lags_criterion = NaN}.
#' @param instr Deprecated input name. Use \emph{shock} instead. See \emph{shock} for details.
#' @param use_twosls Boolean. Use two stage least squares? TRUE or FALSE (default).
#' @param instrum A \link{data.frame}, containing the instrument(s) to use for 2SLS. This instrument will be used for the
#' variable in \emph{shock}.
#' @param lags_endog_lin NaN or integer. NaN if lags are chosen by a lag length criterion. Integer for number of lags for \emph{endog_data}.
#' @param exog_data A \link{data.frame}, containing exogenous variables. The row length has to be the same as \emph{endog_data}.
#' Lag lengths for exogenous variables have to be given and will not be determined via a lag length criterion.
#' @param lags_exog NULL or Integer. Integer for the number of lags for the exogenous data. The value cannot be 0. If you want to
#' to include exogenous data with contemporaneous impact use `contemp_data`.
#' @param contemp_data A \link{data.frame}, containing exogenous data with contemporaneous impact.
#' The row length has to be the same as \emph{endog_data}.
#' @param lags_criterion NaN or character. NaN means that the number of lags
#' will be given at \emph{lags_endog_lin}. Possible lag length criteria are 'AICc', 'AIC' or 'BIC'.
#' Note that when \emph{use_twosls = TRUE}, the lag lengths are chosen based on normal OLS regressions, without using the instruments.
#' @param max_lags NaN or integer. Maximum number of lags if \emph{lags_criterion} is a character denoting the lag length criterion. NaN otherwise.
#' @param trend Integer. No trend = 0 , include trend = 1, include trend and quadratic trend = 2.
#' @param confint Double. Width of confidence bands. 68\% = 1; 90\% = 1.65; 95\% = 1.96.
#' @param use_nw Boolean. Use Newey-West (1987) standard errors for impulse responses? TRUE (default) or FALSE.
#' @param nw_lag Integer. Specifies the maximum lag with positive weight for the Newey-West estimator. If set to NULL (default), the lag increases with
#' with the number of horizon.
#' @param nw_prewhite Boolean. Should the estimators be pre-whitened? TRUE of FALSE (default).
#' @param adjust_se Boolen. Should a finite sample adjsutment be made to the covariance matrix estimators? TRUE or FALSE (default).
#' @param hor Integer. Number of horizons for impulse responses.
#' @param num_cores NULL or Integer. The number of cores to use for the estimation. If NULL, the function will
#' use the maximum number of cores minus one.
#'
#' @seealso \url{https://adaemmerp.github.io/lpirfs/README_docs.html}
#'
#' @return A list containing:
#'
#'
#'
#'\item{irf_lin_mean}{A \link{matrix}, containing the impulse responses.
#' The row in each matrix denotes the response of the \emph{ith}
#' variable to the shock. The columns are the horizons.}
#'
#'\item{irf_lin_low}{A \link{matrix}, containing all lower confidence bands of
#' the impulse responses, based on robust standard errors by Newey and West (1987).
#' Properties are equal to \emph{irf_lin_mean}.}
#'
#'\item{irf_lin_up}{A \link{matrix}, containing all upper confidence bands of
#' the impulse responses, based on robust standard errors by Newey and West (1987).
#' Properties are equal to \emph{irf_lin_mean}.}
#'
#'\item{specs}{A list with properties of \emph{endog_data} for the plot function. It also contains
#' lagged data (y_lin and x_lin) used for the estimations of the impulse responses, and the selected lag lengths when an information criterion has been used.}
#'
#'
#'
#' @export
#' @references
#' Akaike, H. (1974). "A new look at the statistical model identification", \emph{IEEE Transactions on Automatic Control}, 19 (6): 716–723.
#'
#' Auerbach, A. J., and Gorodnichenko, Y. (2012). "Measuring the Output Responses to Fiscal Policy."
#' \emph{American Economic Journal: Economic Policy}, 4 (2): 1-27.
#'
#' Blanchard, O., and Perotti, R. (2002). “An Empirical Characterization of the
#' Dynamic Effects of Changes in Government Spending and Taxes on Output.” \emph{Quarterly
#' Journal of Economics}, 117(4): 1329–1368.
#'
#' Hurvich, C. M., and Tsai, C.-L. (1989), "Regression and time series model selection in small samples",
#' \emph{Biometrika}, 76(2): 297–307
#'
#' Jordà, Ò. (2005). "Estimation and Inference of Impulse Responses by Local Projections."
#' \emph{American Economic Review}, 95 (1): 161-182.
#'
#' Jordà, Ò, Schularick, M., Taylor, A.M. (2015), "Betting the house", \emph{Journal of International Economics},
#' 96, S2-S18.
#'
#' Newey, W.K., and West, K.D. (1987). “A Simple, Positive-Definite, Heteroskedasticity and
#' Autocorrelation Consistent Covariance Matrix.” \emph{Econometrica}, 55: 703–708.
#'
#' Ramey, V.A., and Zubairy, S. (2018). "Government Spending Multipliers in Good Times
#' and in Bad: Evidence from US Historical Data." \emph{Journal of Political Economy},
#' 126(2): 850 - 901.
#'
#' Schwarz, Gideon E. (1978). "Estimating the dimension of a model", \emph{Annals of Statistics}, 6 (2): 461–464.
#'
#'@author Philipp Adämmer
#'@import foreach dplyr
#'@importFrom stats na.omit pf
#'@examples
#'\donttest{
#'
#'# This example replicates a result from the Supplementary Appendix
#'# by Ramey and Zubairy (2018) (RZ-18)
#'
#'# Load data
#' ag_data <- ag_data
#' sample_start <- 7
#' sample_end <- dim(ag_data)[1]
#'
#'# Endogenous data
#' endog_data <- ag_data[sample_start:sample_end,3:5]
#'
#'# Variable to shock with. Here government spending due to
#'# Blanchard and Perotti (2002) framework
#' shock <- ag_data[sample_start:sample_end, 3]
#'
#'# Estimate linear model
#' results_lin_iv <- lp_lin_iv(endog_data,
#' lags_endog_lin = 4,
#' shock = shock,
#' trend = 0,
#' confint = 1.96,
#' hor = 20)
#'
#'# Show all impulse responses
#' plot(results_lin_iv)
#'
#'# Make and save plots
#' iv_lin_plots <- plot_lin(results_lin_iv)
#'
#'# * The first element of 'iv_lin_plots' shows the response of the first
#'# variable (Gov) to the shock (Gov).
#'# * The second element of 'iv_lin_plots' shows the response of the second
#'# variable (Tax) to the shock (Gov).
#'# * ...
#'
#'# This plot replicates the left plot in the mid-panel of Figure 12 in the
#'# Supplementary Appendix by RZ-18.
#' iv_lin_plots[[1]]
#'
#'
#'# Show diagnostics. The first element shows the reaction of the first given endogenous variable.
#' summary(results_lin_iv)
#'
#'
#'## Add lags of the identified shock ##
#'
#'# Endogenous data but now exclude government spending
#' endog_data <- ag_data[sample_start:sample_end, 4:5]
#'
#'# Variable to shock with (government spending)
#' shock <- ag_data[sample_start:sample_end, 3]
#'
#'# Add the shock variable to exogenous data
#' exog_data <- shock
#'
#'# Estimate linear model with lagged shock variable
#' results_lin_iv <- lp_lin_iv(endog_data,
#' lags_endog_lin = 4,
#' shock = shock,
#' exog_data = exog_data,
#' lags_exog = 2,
#' trend = 0,
#' confint = 1.96,
#' hor = 20)
#'
#'
#'# Show all responses
#' plot(results_lin_iv)
#'
#'# Show diagnostics. The first element shows the reaction of the first endogenous variable.
#' summary(results_lin_iv)
#'
#'
#'##############################################################################
#'##### Use 2SLS #########
#'##############################################################################
#'
#'# Set seed
#' set.seed(007)
#'
#'# Load data
#' ag_data <- ag_data
#' sample_start <- 7
#' sample_end <- dim(ag_data)[1]
#'
#'# Endogenous data
#' endog_data <- ag_data[sample_start:sample_end,3:5]
#'
#'# Variable to shock with (government spending)
#' shock <- ag_data[sample_start:sample_end, 3]
#'
#'# Generate instrument variable that is correlated with government spending
#' instrum <- as.data.frame(0.9*shock$Gov + rnorm(length(shock$Gov), 0, 0.02) )
#'
#'# Estimate linear model via 2SLS
#' results_lin_iv <- lp_lin_iv(endog_data,
#' lags_endog_lin = 4,
#' shock = shock,
#' instrum = instrum,
#' use_twosls = TRUE,
#' trend = 0,
#' confint = 1.96,
#' hor = 20)
#'
#'# Show all responses
#' plot(results_lin_iv)
#'
#' }
#'
#'
lp_lin_iv <- function(endog_data,
shock = NULL,
cumul_mult = FALSE,
instr = NULL,
use_twosls = FALSE,
instrum = NULL,
lags_endog_lin = NULL,
exog_data = NULL,
lags_exog = NULL,
contemp_data = NULL,
lags_criterion = NaN,
max_lags = NaN,
trend = NULL,
confint = NULL,
use_nw = TRUE,
nw_lag = NULL,
nw_prewhite = FALSE,
adjust_se = FALSE,
hor = NULL,
num_cores = 1){
# Give warning if 'instr' is used as input name
if(!is.null(instr)){
shock <- instr
warning("'instr' is a deprecated input name. Use 'shock' instead.")
}
# Give warning if 'instr' is used as input name
if(isTRUE(cumul_mult) & is.character(lags_criterion)){
stop("The option cumul_mult = TRUE only works for a fixed number of lags.")
}
# Check whether data is a data.frame
if(!(is.data.frame(endog_data))){
stop('The data has to be a data.frame().')
}
# Check whether data is a data.frame
if(is.nan(lags_endog_lin) & !is.character(lags_criterion)){
stop('"lags_endog_lin" can only be NaN if a lag length criterion is given.')
}
# Check whether instrument for shock is given
if(is.null(shock)){
stop('You have to provide an instrument to shock with.')
}
# Check whether instrument for shock is given
if(!is.data.frame(shock)){
stop('The instrument has to be given as a data.frame().')
}
# Check whether exogenous data is a data.frame
if(!is.null(exog_data) & !is.data.frame(exog_data)){
stop('Exogenous data has to be given as a data.frame.')
}
# Check whether lag length for exogenous data is given
if(!is.null(exog_data) & is.null(lags_exog)){
stop('Please provide a lag length for the exogenous data.')
}
# Check whether 'lags_criterion' is correctly specified
if(is.null(lags_criterion)){
stop('"lags_criterion" has to be NaN or a character, specifying the lag length criterion.')
}
# Give error when no trend is given
if(is.null(trend)){
stop('Please specify whether and which type of trend to include.')
}
# Check whether width for confidence intervals is given
if(is.null(confint)){
stop('Please specify a value for the width of the confidence bands.')
}
# Check whether number of horizons is given
if(is.null(hor)){
stop('Please specify the number of horizons.')
}
# Check whether wrong lag length criterion is given
if(!(is.nan(lags_criterion) | lags_criterion == 'AICc'|
lags_criterion == 'AIC' | lags_criterion == 'BIC')){
stop('Possible lag length criteria are AICc, AIC or BIC. NaN if lag length is specified.')
}
# Check whether lags criterion and maximum number of lags are given
if((is.character(lags_criterion)) &
(!is.na(lags_endog_lin))){
stop('You can not provide a lag criterion (AICc, AIC or BIC) and a fixed number of lags.
Please set lags_endog_lin to NaN if you want to use a lag length criterion.')
}
# Check whether values for horizons are correct
if(!(hor > 0) | is.nan(hor) | !(hor %% 1 == 0)){
stop('The number of horizons has to be an integer and > 0.')
}
# Check whether trend is correctly specified
if(!(trend %in% c(0,1,2))){
stop('For trend please enter 0 = no trend, 1 = trend, 2 = trend and quadratic trend.')
}
# Check whether width of confidence bands is >=0
if(!(confint >=0)){
stop('The width of the confidence bands has to be >=0.')
}
# Give error when use_twosls = T but instrum = NULL
if(isTRUE(use_twosls) & is.null(instrum)){
stop('Please specify at least one instrument to use for 2SLS.')
}
# Check whether lags_exog < 1
if(!is.null(lags_exog)){
if(lags_exog < 1){
stop("'lags_exog' cannot be 0 or negative. If you want to include exogenous data with contemporaneous impact use 'contemp_data'.")
}
}
# Create list to store inputs
specs <- list()
# Specify inputs
specs$shock <- shock
specs$cumul_mult <- cumul_mult
specs$use_twosls <- use_twosls
specs$instrum <- instrum
specs$lags_endog_lin <- lags_endog_lin
specs$exog_data <- exog_data
specs$lags_exog <- lags_exog
specs$contemp_data <- contemp_data
specs$lags_criterion <- lags_criterion
specs$max_lags <- max_lags
specs$trend <- trend
specs$confint <- confint
specs$hor <- hor
specs$use_nw <- use_nw
specs$nw_prewhite <- nw_prewhite
specs$adjust_se <- adjust_se
specs$nw_lag <- nw_lag
specs$model_type <- 1
# Function start
# Safe data frame specifications in 'specs for functions
specs$starts <- 1 # Sample Start
specs$ends <- dim(endog_data)[1] # Sample end
specs$column_names <- names(endog_data) # Name endogenous variables
specs$endog <- ncol(endog_data) # Set the number of endogenous variables
# Construct (lagged) endogenous data
data_lin <- create_lin_data(specs, endog_data)
y_lin <- data_lin[[1]]
x_lin <- data_lin[[2]]
z_lin <- data_lin[[3]]
# Save endogenous and lagged exogenous data in specs
specs$y_lin <- y_lin
specs$x_lin <- x_lin
specs$z_lin <- z_lin
# Matrices to store OLS parameters
b1 <- matrix(NaN, specs$endog, specs$endog)
b1_low <- matrix(NaN, specs$endog, specs$endog)
b1_up <- matrix(NaN, specs$endog, specs$endog)
# Matrices to store irfs for each horizon
irf_mean <- matrix(NaN, 1, specs$hor)
irf_low <- irf_mean
irf_up <- irf_mean
# 3D Arrays for all irfs
irf_lin_mean <- matrix(NaN, nrow = specs$endog, ncol = specs$hor)
irf_lin_low <- irf_lin_mean
irf_lin_up <- irf_lin_mean
# Make matrix to store OLS diagnostics for each endogenous variable k
diagnost_ols_each_h <- matrix(NaN, specs$hor, 4)
rownames(diagnost_ols_each_h) <- paste("h", 1:specs$hor, sep = " ")
colnames(diagnost_ols_each_h) <- c("R-sqrd.", "Adj. R-sqrd.", "F-stat", " p-value")
# Make cluster
if(is.null(num_cores)){
num_cores <- min(specs$endog, parallel::detectCores() - 1)
}
cl <- parallel::makeCluster(num_cores)
doParallel::registerDoParallel(cl)
# Decide whether lag lengths are given or have to be estimated
if(is.nan(specs$lags_criterion) == TRUE){
# Loops to estimate local projections
lin_irfs <- foreach(s = 1:specs$endog,
.packages = c('lpirfs', 'dplyr', 'stats')) %dopar%{ # Accounts for the reaction of the endogenous variable
for (h in 1:(specs$hor)){ # Accounts for the horizons
# Check whether cumulative multipliers shall be computed
if(isTRUE(specs$cumul_mult)) {
# Check whether two stage least squares is used
if(isTRUE(specs$use_twosls)){
yy <- dplyr::lead(y_lin, (h - 1)) - dplyr::lag(y_lin, 1)
na_index <- unname(which(is.na(yy[, 1])))
yy_xx <- cbind(yy, x_lin) %>%
stats::na.omit()
yy <- yy_xx[, 1:(dim(y_lin)[2])]
xx <- yy_xx[, (dim(y_lin)[2] + 1):dim(yy_xx)[2]]
# Extract and convert instrument
zz <- specs$z_lin[(na_index + 1) : (dim(z_lin)[1] - h + 1), ] %>%
as.matrix()
} else {
yy <- dplyr::lead(y_lin, (h - 1)) - dplyr::lag(y_lin, 1)
yy_xx <- cbind(yy, x_lin) %>%
stats::na.omit()
yy <- yy_xx[, 1:(dim(y_lin)[2])]
xx <- yy_xx[, (dim(y_lin)[2] + 1):dim(yy_xx)[2]]
}
} else {
yy <- y_lin[h:dim(y_lin)[1], ]
xx <- x_lin[1:(dim(x_lin)[1] - h + 1), ]
}
# Check whether data are matrices to correctly extract values
if(!is.matrix(xx)){
xx <- as.matrix(xx)
}
if(!is.matrix(yy)){
yy <- matrix(yy)
}
# Set lag number for Newey-West (1987)
if(is.null(nw_lag)){
lag_nw <- h
} else {
lag_nw <- nw_lag
}
# Check whether use OLS or 2sls
if(specs$use_twosls == FALSE){
# Get standard errors and point estimates
get_ols_vals <- lpirfs::get_std_err(yy, xx, lag_nw, s, specs)
std_err <- get_ols_vals[[1]]
b <- get_ols_vals[[2]]
# Get diagnostocs for summary
get_diagnost <- lpirfs::ols_diagnost(yy[, s], xx)
diagnost_ols_each_h[h, 1] <- get_diagnost[[3]]
diagnost_ols_each_h[h, 2] <- get_diagnost[[4]]
diagnost_ols_each_h[h, 3] <- get_diagnost[[5]]
diagnost_ols_each_h[h, 4] <- stats::pf(get_diagnost[[5]], get_diagnost[[6]], get_diagnost[[7]], lower.tail = F)
} else {
# Check whether cumulative multipliers are used
if(isTRUE(specs$cumul_mult)){
# do nothing: zz has already been build above
} else {
zz <- specs$z_lin[1 : (dim(z_lin)[1] - h + 1), ] %>%
as.matrix()
}
get_tsls_vals <- get_std_err_tsls(yy, xx, lag_nw, s, zz, specs)
b <- get_tsls_vals[[2]]
std_err <- get_tsls_vals[[1]]
# Get diagnostocs for summary
get_diagnost <- lpirfs::ols_diagnost(yy[, s], xx)
diagnost_ols_each_h[h, 1] <- get_diagnost[[3]]
diagnost_ols_each_h[h, 2] <- get_diagnost[[4]]
diagnost_ols_each_h[h, 3] <- get_diagnost[[5]]
diagnost_ols_each_h[h, 4] <- stats::pf(get_diagnost[[5]], get_diagnost[[6]], get_diagnost[[7]], lower.tail = F)
}
# Fill matrices with local projections
irf_mean[1, h] <- b[2]
irf_low[1, h] <- b[2] - std_err[2]
irf_up[1, h] <- b[2] + std_err[2]
}
# Return irfs
return(list(irf_mean, irf_low, irf_up, diagnost_ols_each_h))
}
# List for OLS diagnostics
diagnostic_list <- list()
# Fill arrays with irfs
for(i in 1:specs$endog){
irf_lin_mean[i , ] <- as.matrix(do.call(rbind, lin_irfs[[i]][1]))
irf_lin_low[i , ] <- as.matrix(do.call(rbind, lin_irfs[[i]][2]))
irf_lin_up[i , ] <- as.matrix(do.call(rbind, lin_irfs[[i]][3]))
diagnostic_list[[i]] <- lin_irfs[[i]][[4]]
}
# Name the list of diagnostics
names(diagnostic_list) <- paste("Endog. Variable:", specs$column_names , sep = " ")
################################################################################
} else {
################################################################################
# Convert chosen lag criterion to number for loop
lag_crit <- switch(specs$lags_criterion,
'AICc'= 1,
'AIC' = 2,
'BIC' = 3)
# Make list to store chosen lags
chosen_lags <- list()
# Make matrix to store selected lags
chosen_lags_h <- matrix(NaN, specs$hor, 1)
# Loops to estimate local projections.
lin_irfs <- foreach(s = 1:specs$endog,
.packages = 'lpirfs') %dopar% { # Accounts for the reaction of the endogenous variable
for (h in 1:specs$hor){ # Accounts for the horizon
# Set lag number for Newey-West (1987)
if(is.null(nw_lag)){
lag_nw <- h
} else {
lag_nw <- nw_lag
}
# Find optimal lags
n_obs <- nrow(y_lin[[1]]) - h + 1 # Number of observations for model with lag one
val_criterion <- lpirfs::get_vals_lagcrit(y_lin, x_lin, lag_crit, lag_nw, s,
specs$max_lags, n_obs)
# Set optimal lag length
lag_choice <- which.min(val_criterion)
# Extract matrices based on optimal lag length
yy <- y_lin[[lag_choice]][, s]
yy <- yy[h:length(yy)]
xx <- x_lin[[lag_choice]]
xx <- xx[1:(dim(xx)[1] - h + 1),]
# Check whether use OLS or 2sls
if(specs$use_twosls == FALSE){
# Get standard errors and point estimates
get_ols_vals <- lpirfs::get_std_err(yy, xx, lag_nw, 1, specs)
std_err <- get_ols_vals[[1]]
b <- get_ols_vals[[2]]
# Get diagnostocs for summary
get_diagnost <- lpirfs::ols_diagnost(yy, xx)
diagnost_ols_each_h[h, 1] <- get_diagnost[[3]]
diagnost_ols_each_h[h, 2] <- get_diagnost[[4]]
diagnost_ols_each_h[h, 3] <- get_diagnost[[5]]
diagnost_ols_each_h[h, 4] <- stats::pf(get_diagnost[[5]], get_diagnost[[6]], get_diagnost[[7]], lower.tail = F)
chosen_lags_h[h, 1] <- lag_choice
} else {
# Extract instrument matrix z_lin
zz <- z_lin[[lag_choice]]
zz <- zz[1:(dim(zz)[1] - h + 1),]
get_tsls_vals <- get_std_err_tsls(yy, xx, lag_nw, 1, zz, specs)
b <- get_tsls_vals[[2]]
std_err <- get_tsls_vals[[1]]
# Get diagnostocs for summary
get_diagnost <- lpirfs::ols_diagnost(yy, xx)
diagnost_ols_each_h[h, 1] <- get_diagnost[[3]]
diagnost_ols_each_h[h, 2] <- get_diagnost[[4]]
diagnost_ols_each_h[h, 3] <- get_diagnost[[5]]
diagnost_ols_each_h[h, 4] <- stats::pf(get_diagnost[[5]], get_diagnost[[6]], get_diagnost[[7]], lower.tail = F)
chosen_lags_h[h, 1] <- lag_choice
}
# Fill matrices with local projections
irf_mean[1, h] <- b[2]
irf_low[1, h] <- b[2] - std_err[2]
irf_up[1, h] <- b[2] + std_err[2]
}
return(list(irf_mean, irf_low, irf_up,
diagnost_ols_each_h,
chosen_lags_h))
}
# Fill list with all OLS diagnostics
diagnostic_list <- list()
# Fill arrays with irfs
for(i in 1:specs$endog){
# Fill irfs
irf_lin_mean[i , ] <- as.matrix(do.call(rbind, lin_irfs[[i]][1]))
irf_lin_low[i , ] <- as.matrix(do.call(rbind, lin_irfs[[i]][2]))
irf_lin_up[i , ] <- as.matrix(do.call(rbind, lin_irfs[[i]][3]))
diagnostic_list[[i]] <- lin_irfs[[i]][[4]]
chosen_lags[[i]] <- lin_irfs[[i]][[5]]
}
# Name the list of diagnostics
names(diagnostic_list) <- paste("Endog. Variable:", specs$column_names , sep = " ")
names(chosen_lags) <- paste("Endog. Variable:", specs$column_names , sep = " ")
specs$chosen_lags <- chosen_lags
}
# Close cluster
parallel::stopCluster(cl)
result <- list(irf_lin_mean = irf_lin_mean,
irf_lin_low = irf_lin_low,
irf_lin_up = irf_lin_up,
diagnostic_list = diagnostic_list,
specs = specs)
# Give object S3 name
class(result) <- "lpirfs_lin_iv_obj"
return(result)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.