#' @name lp_nl
#' @title Compute nonlinear impulse responses
#' @description Compute nonlinear impulse responses with local projections by Jordà (2005). The
#' data can be separated into two states by a smooth transition function as applied in Auerbach and Gorodnichenko (2012),
#' or by a simple dummy approach.
#'
#' @param endog_data A \link{data.frame}, containing all endogenous variables for the VAR. The Cholesky decomposition is based on the
#' column order.
#' @param lags_criterion NaN or character. NaN (default) means that the number of lags
#' will be given at \emph{lags_endog_nl} and \emph{lags_endog_lin}. The lag length criteria are 'AICc', 'AIC' and 'BIC'.
#' @param lags_endog_lin NaN or integer. NaN if lag length criterion is used.
#' Integer for number of lags for linear VAR to identify shock.
#' @param lags_endog_nl NaN or integer. Number of lags for nonlinear VAR. NaN if lag length criterion is given.
#' @param max_lags NaN or integer. Maximum number of lags (if \emph{lags_criterion} = 'AICc', 'AIC', 'BIC'). NaN (default) otherwise.
#' @param trend Integer. Include no trend = 0 , include trend = 1, include trend and quadratic trend = 2.
#' @param shock_type Integer. Standard deviation shock = 0, unit shock = 1.
#' @param confint Double. Width of confidence bands. 68\% = 1; 90\% = 1.65; 95\% = 1.96.
#' @param use_nw Boolean. Use Newey-West (1987) standard errors for impulse responses? TRUE (default) or FALSE.
#' @param nw_lag Integer. Specifies the maximum lag with positive weight for the Newey-West estimator. If set to NULL (default), the lag increases with
#' with the number of horizon.
#' @param nw_prewhite Boolean. Should the estimators be pre-whitened? TRUE of FALSE (default).
#' @param adjust_se Boolen. Should a finite sample adjsutment be made to the covariance matrix estimators? TRUE or FALSE (default).
#' @param hor Integer. Number of horizons for impulse responses.
#' @param switching Numeric vector. A column vector with the same length as \emph{endog_data}. If 'use_logistic = TRUE', this series can either
#' be decomposed via the Hodrick-Prescott filter (see Auerbach and Gorodnichenko, 2013) or
#' directly plugged into the following logistic function:
#' \deqn{ F_{z_t} = \frac{exp(-\gamma z_t)}{1 + exp(-\gamma z_t)}. }
#' Important: \eqn{F_{z_t}} will be lagged by one and then multiplied with the data.
#' If the variable shall not be lagged, use 'lag_switching = FALSE': \cr
#' Regime 1 = (1-\eqn{F(z_{t-1})})*y_{(t-p)}, \cr
#' Regime 2 = \eqn{F(z_{t-1})}*y_{(t-p)}.
#'@param lag_switching Boolean. Use the first lag of the values of the transition function? TRUE (default) or FALSE.
#'@param gamma Double. Positive number which is used in the transition function.
#'@param use_logistic Boolean. Use logistic function to separate states? TRUE (default) or FALSE. If FALSE, the values of the switching variable
#' have to be binary (0/1).
#'@param use_hp Boolean. Use HP-filter? TRUE or FALSE.
#'@param lambda Double. Value of \eqn{\lambda} for the Hodrick-Prescott filter (if use_hp = TRUE).
#'@param exog_data A \link{data.frame}, containing exogenous variables for the VAR. The row length has to be the same as \emph{endog_data}.
#' Lag lengths for exogenous variables have to be given and will not be determined via a lag length criterion.
#' @param lags_exog NULL or Integer. Integer for the number of lags for the exogenous data. The value cannot be 0. If you want to
#' to include exogenous data with contemporaneous impact use \emph{contemp_data}.
#' @param contemp_data A \link{data.frame}, containing exogenous data with contemporaneous impact. This data will not be lagged.
#' The row length has to be the same as \emph{endog_data}.
#'@param num_cores Integer. The number of cores to use for the estimation. If NULL, the function will
#' use the maximum number of cores minus one.
#'
#'@seealso \url{https://adaemmerp.github.io/lpirfs/README_docs.html}
#'
#'
#' @return A list containing:
#'
#'\item{irf_s1_mean}{A three 3D \link{array}, containing all impulse responses for all endogenous variables of the first state.
#' The last dimension denotes the shock variable. The row in each matrix
#' denotes the responses of the \emph{ith} variable, ordered as in \emph{endog_data}. The columns are the horizons.
#' For example, if the results are saved in \emph{results_nl}, results_nl$irf_s1_mean[, , 1] returns a KXH matrix,
#' where K is the number of variables and H the number of horizons. '1' is the shock variable, corresponding to the
#' variable in the first column of \emph{endog_data}.}
#'
#'\item{irf_s1_low}{A three 3D \link{array}, containing all lower confidence bands of the impulse responses, based on
#' robust standard errors by Newey and West (1987). Properties are equal to \emph{irf_s1_mean}.}
#'
#'\item{irf_s1_up}{A three 3D \link{array}, containing all upper confidence bands of the impulse responses, based on
#' robust standard errors by Newey and West (1987). Properties are equal to \emph{irf_s1_mean}.}
#'
#'\item{irf_s2_mean}{A three 3D \link{array}, containing all impulse responses for all endogenous variables of the second state.
#' The last dimension denotes the shock variable. The row in each matrix
#' denotes the responses of the \emph{ith} variable, ordered as in endog_data. The columns denote the horizon.
#' For example, if the results are saved in \emph{results_nl}, results_nl$irf_s2_mean[, , 1] returns a KXH matrix,
#' where K is the number of variables and H the number of horizons. '1' is the first shock variable corresponding to the
#' variable in the first column of \emph{endog_data}.}
#'
#'\item{irf_s2_low}{A three 3D \link{array}, containing all lower confidence bands of the responses,
#' based on robust standard errors by Newey and West (1987). Properties are equal to \emph{irf_s2_mean}.}
#'
#'\item{irf_s2_up}{A three 3D \link{array}, containing all upper confidence bands of the responses, based on
#' robust standard errors by Newey and West (1987). Properties are equal to \emph{irf_s2_mean}.}
#'
#'\item{specs}{A list with properties of \emph{endog_data} for the plot function. It also contains
#' lagged data (y_nl and x_nl) used for the irf estimations, and the selected lag lengths when an information criterion has been used.}
#'
#'\item{fz}{A vector containing the values of the transition function F(z_{t-1}).}
#'
#' @export
#'
#' @references
#'
#' Akaike, H. (1974). "A new look at the statistical model identification", \emph{IEEE Transactions on Automatic Control}, 19 (6): 716–723.
#'
#' Auerbach, A. J., and Gorodnichenko Y. (2012). "Measuring the Output Responses to Fiscal Policy."
#' \emph{American Economic Journal: Economic Policy}, 4 (2): 1-27.
#'
#' Auerbach, A. J., and Gorodnichenko Y. (2013). "Fiscal Multipliers in Recession and Expansion."
#' \emph{NBER Working Paper Series}. Nr. 17447.
#'
#' Hurvich, C. M., and Tsai, C.-L. (1989), "Regression and time series model selection in small samples",
#' \emph{Biometrika}, 76(2): 297–307
#'
#' Jordà, Ò. (2005) "Estimation and Inference of Impulse Responses by Local Projections."
#' \emph{American Economic Review}, 95 (1): 161-182.
#'
#' Newey, W.K., and West, K.D. (1987). “A Simple, Positive-Definite, Heteroskedasticity and
#' Autocorrelation Consistent Covariance Matrix.” \emph{Econometrica}, 55, 703–708.
#'
#' Schwarz, Gideon E. (1978). "Estimating the dimension of a model", \emph{Annals of Statistics}, 6 (2): 461–464.
#'
#' Ravn, M.O., Uhlig, H. (2002). "On Adjusting the Hodrick-Prescott Filter for the Frequency of Observations."
#' \emph{Review of Economics and Statistics}, 84(2), 371-376.
#'
#' @import foreach
#' @examples
#'\donttest{
#' ## Example without exogenous variables ##
#'
#'# Load package
#' library(lpirfs)
#' library(gridExtra)
#' library(ggpubr)
#'
#'
#'# Load (endogenous) data
#' endog_data <- interest_rules_var_data
#'
#'# Choose data for switching variable (here Federal Funds Rate)
#'# Important: The switching variable does not have to be used within the VAR!
#' switching_data <- endog_data$Infl
#'
#'# Estimate model and save results
#' results_nl <- lp_nl(endog_data,
#' lags_endog_lin = 4,
#' lags_endog_nl = 3,
#' trend = 0,
#' shock_type = 1,
#' confint = 1.96,
#' hor = 24,
#' switching = switching_data,
#' use_hp = TRUE,
#' lambda = 1600,
#' gamma = 3)
#'
#'# Show all plots
#' plot(results_nl)
#'
#'# Make and save all plots
#' nl_plots <- plot_nl(results_nl)
#'
#'# Save plots based on states
#' s1_plots <- sapply(nl_plots$gg_s1, ggplotGrob)
#' s2_plots <- sapply(nl_plots$gg_s2, ggplotGrob)
#'
#'# Show first irf of each state
#' plot(s1_plots[[1]])
#' plot(s2_plots[[1]])
#'
#'# Show diagnostics. The first element correponds to the first shock variable.
#' summary(results_nl)
#'
#'
#' ## Example with exogenous variables ##
#'
#'# Load (endogenous) data
#' endog_data <- interest_rules_var_data
#'
#'# Choose data for switching variable (here Federal Funds Rate)
#'# Important: The switching variable does not have to be used within the VAR!
#' switching_data <- endog_data$FF
#'
#'# Create exogenous data and data with contemporaneous impact (for illustration purposes only)
#' exog_data <- endog_data$GDP_gap*endog_data$Infl*endog_data$FF + rnorm(dim(endog_data)[1])
#' contemp_data <- endog_data$GDP_gap*endog_data$Infl*endog_data$FF + rnorm(dim(endog_data)[1])
#'
#'# Exogenous data has to be a data.frame
#' exog_data <- data.frame(xx = exog_data)
#' contemp_data <- data.frame(cc = contemp_data)
#'
#'# Estimate model and save results
#' results_nl <- lp_nl(endog_data,
#' lags_endog_lin = 4,
#' lags_endog_nl = 3,
#' trend = 0,
#' shock_type = 1,
#' confint = 1.96,
#' hor = 24,
#' switching = switching_data,
#' use_hp = TRUE,
#' lambda = 1600, # Ravn and Uhlig (2002):
#' # Anuual data = 6.25
#' # Quarterly data = 1600
#' # Monthly data = 129 600
#' gamma = 3,
#' exog_data = exog_data,
#' lags_exog = 3)
#'
#'
#'# Show all plots
#' plot(results_nl)
#'
#'
#'# Show diagnostics. The first element correponds to the first shock variable.
#' summary(results_nl)
#'
#'
#'
#'}
#' @author Philipp Adämmer
#'
lp_nl <- function(endog_data,
lags_endog_lin = NULL,
lags_endog_nl = NULL,
lags_criterion = NaN,
max_lags = NaN,
trend = NULL,
shock_type = NULL,
confint = NULL,
use_nw = TRUE,
nw_lag = NULL,
nw_prewhite = FALSE,
adjust_se = FALSE,
hor = NULL,
switching = NULL,
lag_switching = TRUE,
use_logistic = TRUE,
use_hp = NULL,
lambda = NULL,
gamma = NULL,
exog_data = NULL,
lags_exog = NULL,
contemp_data = NULL,
num_cores = 1){
# Create list to store inputs
specs <- list()
# Specify inputs
specs$lags_endog_lin <- lags_endog_lin
specs$lags_endog_nl <- lags_endog_nl
specs$lags_criterion <- lags_criterion
specs$max_lags <- max_lags
specs$trend <- trend
specs$shock_type <- shock_type
specs$confint <- confint
specs$hor <- hor
specs$switching <- switching
specs$lag_switching <- lag_switching
specs$use_logistic <- use_logistic
specs$use_hp <- use_hp
specs$lambda <- lambda
specs$gamma <- gamma
specs$exog_data <- exog_data
specs$lags_exog <- lags_exog
specs$use_nw <- use_nw
specs$nw_prewhite <- nw_prewhite
specs$adjust_se <- adjust_se
specs$nw_lag <- nw_lag
# Add 'contempranoeus' as NULL for data construction
specs$contemp_data <- NULL
# Set model type for lag construction
specs$model_type <- 0
# Set 2SLS option to FALSE
specs$use_twosls <- FALSE
#--- Check inputs
# Check whether data is a data.frame
if(!(is.data.frame(endog_data))){
stop('The data has to be a data.frame().')
}
# Check whether 'trend' is given
if(is.null(specs$trend)){
stop('Please specify whether and which type of trend to include.')
}
# Check whether 'shock_type' is given
if(is.null(specs$shock_type)){
stop('Please specify which type of shock to use.')
}
# Check whether switching variable is given
if(is.null(specs$switching)){
stop('Please provide a switching variable.')
}
# Check whether 'use_hp' is given
if(isTRUE(specs$use_logistic) & is.null(specs$use_hp)){
stop('Please specify whether to use the HP-filter for the switching variable.')
}
# Check whether lambda is given if 'use_hp == 1'
if(isTRUE(specs$use_hp) & (is.null(specs$lambda))){
stop('Please specify lambda for the HP-filter.')
}
# Check whether 'confint' is given
if(is.null(specs$confint)){
stop('Please specify a value for the width of the confidence bands.')
}
# Check whether number of horizons is given
if(is.null(specs$hor)){
stop('Please specify the number of horizons.')
}
# Check whether wrong lag length criterion is given
if(!(is.nan(specs$lags_criterion) | specs$lags_criterion == 'AICc'|
specs$lags_criterion == 'AIC' | specs$lags_criterion == 'BIC') == TRUE){
stop('Possible lag length criteria are AICc, AIC or BIC or NaN if lag length is specified.')
}
# Check whether lags criterion and fixed number of lags for nonlinear model is given
if((is.character(specs$lags_criterion)) &
(!is.na(specs$lags_endog_nl))){
stop('You can not provide a lag criterion (AICc, AIC or BIC) and a fixed number of lags.')
}
# Check whether lags criterion and fixed number of lags for linear model is given
if((is.character(specs$lags_criterion)) &
(!is.na(specs$lags_endog_lin))){
stop('You can not provide a lag criterion (AICc, AIC or BIC) and a fixed number of lags.')
}
# Check whether maximum number of lags is given for lag length criterion
if((is.character(specs$lags_criterion)) &
(is.na(specs$max_lags))){
stop('Please provide a maximum number of lags for the lag length criterion.')
}
# Check whether lin_lags is given if nl_lags is given
if((is.numeric(specs$lags_endog_nl)) &
(is.null(specs$lags_endog_lin))){
stop('Please provide a lag length for the linear model to identify the shock.')
}
# Check whether values for horizons are correct
if(!(specs$hor > 0) | is.nan(specs$hor) | !(specs$hor %% 1 == 0)){
stop('The number of horizons has to be an integer and > 0.')
}
# Check whether lags for linear model are integers
if(is.numeric(specs$lags_endog_nl) & !is.nan(specs$lags_endog_nl)){
if(!(specs$lags_endog_nl %% 1 == 0) | specs$lags_endog_nl < 0){
stop('The number of lags have to be a positive integer.')
}
} else {}
# Check whether trend is correctly specified
if(!(specs$trend %in% c(0,1,2))){
stop('For trend please set 0 = no trend, 1 = trend, 2 = trend and quadratic trend.')
}
# Check whether shock type is correctly specified
if(!(specs$shock_type %in% c(0,1))){
stop('The shock_type has to be 0 = standard deviation shock or 1 = unit shock.')
}
# Check whether width of confidence bands is >=0
if(!(specs$confint >=0)){
stop('The width of the confidence bands has to be >=0.')
}
# Check whether 'gamma' is given
if(isTRUE(use_logistic) & is.null(gamma) == TRUE){
stop('Please specify gamma for the transition function.')
}
# Check whether gamma is positive
if(isTRUE(use_logistic)){
if(specs$gamma < 0){
stop('Gamma has to be a positive number.')
}
}
# Check whether use_hp is either 0 or 1 is positive
if(isTRUE(use_logistic)){
if(!(specs$use_hp %in% c(0, 1))){
stop('Please set use_hp = 0 (do not use HP-filter), or use_hp = 1 (use HP-filter).')
}
}
# Check whether use_hp is either 0 or 1 is positive
if(!is.na(specs$max_lags) & specs$max_lags < 0 ){
stop('The maximum number of lags has to be a positive integer.')
}
# Check whether whether no lag length criterion is given but maximum number of lags.
if(is.nan(specs$lags_criterion) & !is.nan(specs$max_lags)& is.numeric(specs$max_lags)){
stop('The maximum number of lags can only be used if a lag length criterion is given.')
}
# Check whether lags_exog < 1
if(!is.null(lags_exog)){
if(lags_exog < 1){
stop("'lags_exog' cannot be 0 or negative. If you want to include exogenous data with contemporaneous impact use 'contemp_data'.")
}
}
# Safe data frame specifications in 'specs for functions
specs$starts <- 1 # Sample Start
specs$ends <- dim(endog_data)[1] # Sample end
specs$column_names <- names(endog_data) # Name endogenous variables
specs$endog <- ncol(endog_data) # Set the number of endogenous variables
# Construct data for nonlinear model
data_nl <- create_nl_data(specs, endog_data) %>%
stats::na.omit() %>%
`rownames<-`(NULL)
y_nl <- data_nl[[1]]
x_nl <- data_nl[[2]]
fz <- data_nl[[3]]
# Save endogenous and lagged exogenous of nonlinear data in specs
specs$y_nl <- y_nl
specs$x_nl <- x_nl
# Construct data for linear model for reduced shocks
data_lin <- create_lin_data(specs, endog_data)
y_lin <- data_lin[[1]]
x_lin <- data_lin[[2]]
# Save endogenous and lagged exogenous of linear data in specs
specs$y_lin <- y_lin
specs$x_lin <- x_lin
# Construct shock matrix
d <- get_mat_chol(y_lin, x_lin, endog_data, specs)
# Matrices to store irfs for each horizon
irf_temp_s1_mean <- matrix(NaN, specs$endog, specs$hor + 1)
irf_temp_s1_low <- irf_temp_s1_mean
irf_temp_s1_up <- irf_temp_s1_mean
irf_temp_s2_mean <- matrix(NaN, specs$endog, specs$hor + 1)
irf_temp_s2_low <- irf_temp_s2_mean
irf_temp_s2_up <- irf_temp_s2_mean
# Arrays to store irfs
irf_s1_mean <- array(NaN, dim = c(specs$endog, specs$hor + 1, specs$endog))
irf_s1_low <- irf_s1_mean
irf_s1_up <- irf_s1_mean
irf_s2_mean <- array(NaN, dim = c(specs$endog, specs$hor + 1, specs$endog))
irf_s2_low <- irf_s2_mean
irf_s2_up <- irf_s2_mean
# Matrices to store OLS parameters for regime 1 & 2
b1_s1 <- matrix(NaN, specs$endog, specs$endog)
b1_low_s1 <- matrix(NaN, specs$endog, specs$endog)
b1_up_s1 <- matrix(NaN, specs$endog, specs$endog)
b1_s2 <- matrix(NaN, specs$endog, specs$endog)
b1_low_s2 <- matrix(NaN, specs$endog, specs$endog)
b1_up_s2 <- matrix(NaN, specs$endog, specs$endog)
# Define coefficient position to extract regime_1 and regime_2 parameters in loop
start_nl_s1 <- 2
end_nl_s1 <- specs$endog + 1
samp_nl_s1 <- start_nl_s1:end_nl_s1
# Make list to store OLS diagnostics for each horizon
diagnost_ols_each_h <- list()
# Make matrix to store OLS diagnostics for each endogenous variable k
diagnost_each_k <- matrix(NaN, specs$endog, 4)
rownames(diagnost_each_k) <- specs$column_names
colnames(diagnost_each_k) <- c("R-sqrd.", "Adj. R-sqrd.", "F-stat", " p-value")
# Make cluster
if(is.null(num_cores)){
num_cores <- min(specs$endog, parallel::detectCores() - 1)
}
cl <- parallel::makeCluster(num_cores)
doParallel::registerDoParallel(cl)
# Determine whether manual lag lengths are given or have to be determined
if(is.nan(specs$lags_criterion) == TRUE) {
# Determine parameter position for regime 2
start_nl_s2 <- 2 + specs$endog*specs$lags_endog_nl
end_nl_s2 <- start_nl_s2 + specs$endog - 1
samp_nl_s2 <- start_nl_s2:end_nl_s2
# Loops to estimate local projections
nl_irfs <- foreach( s = 1:specs$endog,
.packages = 'lpirfs') %dopar%{ # Accounts for the shocks
for (h in 1:specs$hor){ # Accounts for the horizons
yy <- y_nl[h:dim(y_nl)[1], ]
xx <- x_nl[1:(dim(x_nl)[1] - h + 1), ]
# Set lag number for Newey-West (1987)
if(is.null(nw_lag)){
lag_nw <- h
} else {
lag_nw <- nw_lag
}
for (k in 1:specs$endog){ # Accounts for the reactions of the endogenous variables
# Get standard errors and point estimates
get_ols_vals <- lpirfs::get_std_err(yy, xx, lag_nw, k, specs)
std_err <- get_ols_vals[[1]]
b <- get_ols_vals[[2]]
# Extract coefficients
b1_s1[k, ] <- b[samp_nl_s1]
b1_low_s1[k, ] <- b[samp_nl_s1] - std_err[samp_nl_s1]
b1_up_s1[k, ] <- b[samp_nl_s1] + std_err[samp_nl_s1]
b1_s2[k, ] <- b[samp_nl_s2]
b1_low_s2[k, ] <- b[samp_nl_s2] - std_err[samp_nl_s2]
b1_up_s2[k, ] <- b[samp_nl_s2] + std_err[samp_nl_s2]
# Get diagnostocs for summary
get_diagnost <- lpirfs::ols_diagnost(yy[, k], xx)
diagnost_each_k[k, 1] <- get_diagnost[[3]]
diagnost_each_k[k, 2] <- get_diagnost[[4]]
diagnost_each_k[k, 3] <- get_diagnost[[5]]
diagnost_each_k[k, 4] <- stats::pf(diagnost_each_k[k, 3], get_diagnost[[6]], get_diagnost[[7]], lower.tail = F)
}
# Estimate local projections
irf_temp_s1_mean[, h + 1] <- t(b1_s1 %*% d[ , s])
irf_temp_s1_low[, h + 1] <- t(b1_low_s1 %*% d[ , s])
irf_temp_s1_up[, h + 1] <- t(b1_up_s1 %*% d[ , s])
irf_temp_s2_mean[, h + 1] <- t(b1_s2 %*% d[ , s])
irf_temp_s2_low[, h + 1] <- t(b1_low_s2 %*% d[ , s])
irf_temp_s2_up[, h + 1] <- t(b1_up_s2 %*% d[ , s])
# Give rownames
rownames(diagnost_each_k) <- paste("h", h, ":", specs$column_names, sep ="")
# Save full summary matrix in list for each horizon
diagnost_ols_each_h[[h]] <- diagnost_each_k
}
# Give names to horizon
# names(diagnost_ols_each_h) <- paste("h", 1:specs$hor, sep = " ")
list(irf_temp_s1_mean, irf_temp_s1_low, irf_temp_s1_up,
irf_temp_s2_mean, irf_temp_s2_low, irf_temp_s2_up,
diagnost_ols_each_h)
}
# List to save diagnostics
diagnostic_list <- list()
# Fill arrays with irfs
for(i in 1:specs$endog){
# Fill irfs
irf_s1_mean[, , i] <- as.matrix(do.call(rbind, nl_irfs[[i]][1]))
irf_s1_low[, , i] <- as.matrix(do.call(rbind, nl_irfs[[i]][2]))
irf_s1_up[, , i] <- as.matrix(do.call(rbind, nl_irfs[[i]][3]))
irf_s2_mean[, , i] <- as.matrix(do.call(rbind, nl_irfs[[i]][4]))
irf_s2_low[, , i] <- as.matrix(do.call(rbind, nl_irfs[[i]][5]))
irf_s2_up[, , i] <- as.matrix(do.call(rbind, nl_irfs[[i]][6]))
# First value of is merely the shock
irf_s1_mean[, 1, i] <- t(d[, i])
irf_s1_low[, 1, i] <- irf_s1_mean[, 1, i]
irf_s1_up[, 1, i] <- irf_s1_mean[, 1, i]
irf_s2_mean[, 1, i] <- t(d[, i])
irf_s2_low[, 1, i] <- irf_s1_mean[, 1, i]
irf_s2_up[, 1, i] <- irf_s1_mean[, 1, i]
# Fill list with all OLS diagnostics
diagnostic_list[[i]] <- nl_irfs[[i]][[7]]
}
# Give names to diagnostic List
names(diagnostic_list) <- paste("Shock:", specs$column_names, sep = " ")
################################################################################
} else {
################################################################################
# Convert lag length criterion to number for Rcpp loop
lag_crit <- switch(specs$lags_criterion,
'AICc'= 1,
'AIC' = 2,
'BIC' = 3)
# Make list to store chosen lags
chosen_lags <- list()
# Make matrix to store selected lags
chosen_lags_k <- matrix(NaN, specs$endog, 1)
# names(diagnost_each_k) <- specs$column_names
# --- Loops to estimate local projections.
nl_irfs <- foreach(s = 1:specs$endog,
.packages = 'lpirfs') %dopar% { # Accounts for shocks
for (h in 1:specs$hor){ # Accounts for the horizons
for (k in 1:specs$endog){ # Accounts for the reactions of the endogenous variables
# Find optimal lag length
n_obs <- nrow(y_nl[[1]]) - h + 1 # Number of observations for model with lag one
val_criterion <- lpirfs::get_vals_lagcrit(y_nl, x_nl, lag_crit, h, k,
specs$max_lags, n_obs)
lag_choice <- which.min(val_criterion)
yy <- y_nl[[lag_choice]][, k]
yy <- yy[h: length(yy)]
xx <- x_nl[[lag_choice]]
xx <- xx[1:(dim(xx)[1] - h + 1),]
# Set lag number for Newey-West (1987)
if(is.null(nw_lag)){
lag_nw <- h
} else {
lag_nw <- nw_lag
}
# Get standard errors and point estimates. Set k = 1 because endogenous variable is numeric vector
get_ols_vals <- lpirfs::get_std_err(yy, xx, lag_nw, 1, specs)
std_err <- get_ols_vals[[1]]
b <- get_ols_vals[[2]]
# Set start and values of parameters for regime 2
start_nl_s2 <- 2 + specs$endog*lag_choice
end_nl_s2 <- start_nl_s2 + specs$endog - 1
samp_nl_s2 <- start_nl_s2:end_nl_s2
# Fill paramater matrices
b1_s1[k, ] <- b[samp_nl_s1]
b1_low_s1[k, ] <- b[samp_nl_s1] - std_err[samp_nl_s1]
b1_up_s1[k, ] <- b[samp_nl_s1] + std_err[samp_nl_s1]
b1_s2[k, ] <- b[samp_nl_s2]
b1_low_s2[k, ] <- b[samp_nl_s2] - std_err[samp_nl_s2]
b1_up_s2[k, ] <- b[samp_nl_s2] + std_err[samp_nl_s2]
# Get diagnostocs for summary
get_diagnost <- lpirfs::ols_diagnost(yy, xx)
diagnost_each_k[k, 1] <- get_diagnost[[3]]
diagnost_each_k[k, 2] <- get_diagnost[[4]]
diagnost_each_k[k, 3] <- get_diagnost[[5]]
diagnost_each_k[k, 4] <- stats::pf(diagnost_each_k[k, 3], get_diagnost[[6]], get_diagnost[[7]], lower.tail = F)
# Save chosen lag length
chosen_lags_k[k] <- lag_choice
}
# Estimate local projections
irf_temp_s1_mean[, h + 1] <- t(b1_s1 %*% d[ , s])
irf_temp_s1_low[, h + 1] <- t(b1_low_s1 %*% d[ , s])
irf_temp_s1_up[, h + 1] <- t(b1_up_s1 %*% d[ , s])
irf_temp_s2_mean[, h + 1] <- t(b1_s2 %*% d[ , s])
irf_temp_s2_low[, h + 1] <- t(b1_low_s2 %*% d[ , s])
irf_temp_s2_up[, h + 1] <- t(b1_up_s2 %*% d[ , s])
# Save full summary matrix in list for each horizon
diagnost_ols_each_h[[h]] <- diagnost_each_k
chosen_lags[[h]] <- chosen_lags_k
}
# Give names to horizon
# names(diagnost_ols_each_h) <- paste("h", 1:specs$hor, sep = " ")
# names(chosen_lags) <- paste("h", 1:specs$hor, sep = " ")
list(irf_temp_s1_mean, irf_temp_s1_low, irf_temp_s1_up,
irf_temp_s2_mean, irf_temp_s2_low, irf_temp_s2_up,
diagnost_ols_each_h, chosen_lags)
}
# List to save diagnostics
diagnostic_list <- list()
chosen_lags_list <- list()
# Fill arrays with local projection irfs
for(i in 1:specs$endog){
# Fill irfs
irf_s1_mean[, , i] <- as.matrix(do.call(rbind, nl_irfs[[i]][1]))
irf_s1_low[, , i] <- as.matrix(do.call(rbind, nl_irfs[[i]][2]))
irf_s1_up[, , i] <- as.matrix(do.call(rbind, nl_irfs[[i]][3]))
irf_s2_mean[, , i] <- as.matrix(do.call(rbind, nl_irfs[[i]][4]))
irf_s2_low[, , i] <- as.matrix(do.call(rbind, nl_irfs[[i]][5]))
irf_s2_up[, , i] <- as.matrix(do.call(rbind, nl_irfs[[i]][6]))
# First value of horizon is merely the shock
irf_s1_mean[, 1, i] <- t(d[, i])
irf_s1_low[, 1, i] <- irf_s1_mean[, 1, i]
irf_s1_up[, 1, i] <- irf_s1_mean[, 1, i]
irf_s2_mean[, 1, i] <- t(d[, i])
irf_s2_low[, 1, i] <- irf_s2_mean[, 1, i]
irf_s2_up[, 1, i] <- irf_s2_mean[, 1, i]
# Fill list with all OLS diagnostics
diagnostic_list[[i]] <- nl_irfs[[i]][[7]]
chosen_lags_list[[i]] <- nl_irfs[[i]][[8]]
}
# Give names to diagnostic List
names(diagnostic_list) <- paste("Shock:", specs$column_names, sep = " ")
names(chosen_lags_list) <- paste("Shock:", specs$column_names, sep = " ")
specs$chosen_lags <- chosen_lags_list
}
# Close cluster
parallel::stopCluster(cl)
result <- list(irf_s1_mean = irf_s1_mean,
irf_s1_low = irf_s1_low,
irf_s1_up = irf_s1_up,
irf_s2_mean = irf_s2_mean,
irf_s2_low = irf_s2_low,
irf_s2_up = irf_s2_up,
fz = fz,
specs = specs,
diagnostic_list = diagnostic_list)
# Give object S3 name
class(result) <- "lpirfs_nl_obj"
return(result)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.