#' @name lp_nl_iv
#' @title Compute nonlinear impulse responses with identified shock
#' @description Compute nonlinear impulse responses with local projections and identified shock.
#' The data can be separated into two states by a smooth transition function as applied in Auerbach and Gorodnichenko (2012),
#' or by a simple dummy approach.
#' @param endog_data A \link{data.frame}, containing all endogenous variables for the VAR.
#' @param lags_endog_nl NaN or integer. NaN if lags are chosen by a lag length criterion. Integer for number of lags for \emph{endog_data}.
#' @param shock One column \link{data.frame}, including the instrument to shock with.
#' The row length has to be the same as \emph{endog_data}.
#' @param cumul_mult Boolean. Estimate cumulative multipliers? TRUE or FALSE (default). If TRUE, cumulative responses
#' are estimated via: \deqn{y_{(t+h)} - y_{(t-1)},} where h = 0,..., H-1.
#' This option is only available for \emph{lags_criterion = NaN}.
#' @param instr Deprecated input name. Use \emph{shock} instead. See \emph{shock} for details.
#' @param exog_data A \link{data.frame}, containing exogenous variables. The row length has to be the same as \emph{endog_data}.
#' Lag lengths for exogenous variables have to be given and will not be determined via a lag length criterion.
#' @param lags_exog NULL or Integer. Integer for the number of lags for the exogenous data. The value cannot be 0. If you want to
#' to include exogenous data with contemporaneous impact use \emph{contemp_data}.
#' @param contemp_data A \link{data.frame}, containing exogenous data with contemporaneous impact. This data will not be lagged.
#' The row length has to be the same as \emph{endog_data}.
#' @param lags_criterion NaN or character. NaN means that the number of lags
#' will be given at \emph{lags_endog_nl}. Possible lag length criteria are 'AICc', 'AIC' or 'BIC'.
#' @param max_lags NaN or integer. Maximum number of lags (if \emph{lags_criterion} = 'AICc', 'AIC', 'BIC'). NaN otherwise.
#' @param trend Integer. Include no trend = 0 , include trend = 1, include trend and quadratic trend = 2.
#' @param confint Double. Width of confidence bands. 68\% = 1; 90\% = 1.65; 95\% = 1.96.
#' @param use_nw Boolean. Use Newey-West (1987) standard errors for impulse responses? TRUE (default) or FALSE.
#' @param nw_lag Integer. Specifies the maximum lag with positive weight for the Newey-West estimator. If set to NULL (default), the lag increases with
#' with the number of horizon.
#' @param nw_prewhite Boolean. Should the estimators be pre-whitened? TRUE of FALSE (default).
#' @param adjust_se Boolen. Should a finite sample adjsutment be made to the covariance matrix estimators? TRUE or FALSE (default).
#' @param hor Integer. Number of horizons for impulse responses.
#' @param switching Numeric vector. A column vector with the same length as \emph{endog_data}. This series can either
#' be decomposed via the Hodrick-Prescott filter (see Auerbach and Gorodnichenko, 2013) or
#' directly plugged into the following smooth transition function:
#' \deqn{ F_{z_t} = \frac{exp(-\gamma z_t)}{1 + exp(-\gamma z_t)}. }
#' Warning: \eqn{F_{z_t}} will be lagged by one and then multiplied with the data.
#' If the variable shall not be lagged, the vector has to be given with a lead of one.
#' The data for the two regimes are: \cr
#' Regime 1 = (1-\eqn{F(z_{t-1})})*y_{(t-p)}, \cr
#' Regime 2 = \eqn{F(z_{t-1})}*y_{(t-p)}.
#'@param lag_switching Boolean. Use the first lag of the values of the transition function? TRUE (default) or FALSE.
#'@param gamma Double. Positive number which is used in the transition function.
#'@param use_logistic Boolean. Use logistic function to separate states? TRUE (default) or FALSE. If FALSE, the values of the switching variable
#' have to be binary (0/1).
#'@param use_hp Boolean. Use HP-filter? TRUE or FALSE.
#'@param lambda Double. Value of \eqn{\lambda} for the Hodrick-Prescott filter (if use_hp = TRUE).
#'@param num_cores Integer. The number of cores to use for the estimation. If NULL, the function will
#' use the maximum number of cores minus one.
#'
#'@seealso \url{https://adaemmerp.github.io/lpirfs/README_docs.html}
#'
#'
#'
#'@return A list containing:
#'
#'\item{irf_s1_mean}{A \link{matrix}, containing the impulse responses of the first regime.
#' The row in each matrix denotes the responses of the \emph{ith}
#' variable to the shock. The columns are the horizons.}
#'
#'\item{irf_s1_low}{A \link{matrix}, containing all lower confidence bands of
#' the impulse responses, based on robust standard errors by Newey and West (1987).
#' Properties are equal to \emph{irf_s1_mean}.}
#'
#'\item{irf_s1_up}{A \link{matrix}, containing all upper confidence bands of the
#' impulse responses, based on robust standard errors by Newey and West (1987).
#' Properties are equal to \emph{irf_s1_mean}.}
#'
#'\item{irf_s2_mean}{A \link{matrix}, containing all impulse responses for the second regime.
#' The row in each matrix denotes the responses of the \emph{ith} variable to the shock.
#' The columns denote the horizon.}
#'
#'\item{irf_s2_low}{A \link{matrix}, containing all lower confidence bands of the responses,
#' based on robust standard errors by Newey and West (1987). Properties are equal to \emph{irf_s2_mean}.}
#'
#'\item{irf_s2_up}{A \link{matrix}, containing all upper confidence bands of the responses, based on
#' robust standard errors by Newey and West (1987). Properties are equal to \emph{irf_s2_mean}.}
#'
#'\item{specs}{A list with properties of \emph{endog_data} for the plot function. It also contains
#' lagged data (y_nl and x_nl) used for the estimations of the impulse responses, and the selected lag lengths when an information criterion has been used.}
#'
#'\item{fz}{A vector, containing the values of the transition function F(z_{t-1}).}
#'
#'@export
#'
#'@references
#'
#' Akaike, H. (1974). "A new look at the statistical model identification", \emph{IEEE Transactions on Automatic Control}, 19 (6): 716–723.
#'
#' Auerbach, A. J., and Gorodnichenko Y. (2012). "Measuring the Output Responses to Fiscal Policy."
#' \emph{American Economic Journal: Economic Policy}, 4 (2): 1-27.
#'
#' Auerbach, A. J., and Gorodnichenko Y. (2013). "Fiscal Multipliers in Recession and Expansion."
#' \emph{NBER Working Paper Series}. Nr 17447.
#'
#' Blanchard, O., and Perotti, R. (2002). “An Empirical Characterization of the
#' Dynamic Effects of Changes in Government Spending and Taxes on Output.” \emph{Quarterly
#' Journal of Economics}, 117(4): 1329–1368.
#'
#' Hurvich, C. M., and Tsai, C.-L. (1989), "Regression and time series model selection in small samples",
#' \emph{Biometrika}, 76(2): 297–307
#'
#' Jordà, Ò. (2005) "Estimation and Inference of Impulse Responses by Local Projections."
#' \emph{American Economic Review}, 95 (1): 161-182.
#'
#' Jordà, Ò, Schularick, M., Taylor, A.M. (2015), "Betting the house", \emph{Journal of International Economics},
#' 96, S2-S18.
#'
#' Newey, W.K., and West, K.D. (1987). “A Simple, Positive-Definite, Heteroskedasticity and
#' Autocorrelation Consistent Covariance Matrix.” \emph{Econometrica}, 55, 703–708.
#'
#' Ramey, V.A., and Zubairy, S. (2018). "Government Spending Multipliers in Good Times
#' and in Bad: Evidence from US Historical Data." \emph{Journal of Political Economy},
#' 126(2): 850 - 901.
#'
#' Schwarz, Gideon E. (1978). "Estimating the dimension of a model", \emph{Annals of Statistics}, 6 (2): 461–464.
#'
#' @import foreach
#' @examples
#'\donttest{
#'
#'# This example replicates results from the Supplementary Appendix
#'# by Ramey and Zubairy (2018) (RZ-18).
#'
#'# Load and prepare data
#' ag_data <- ag_data
#' sample_start <- 7
#' sample_end <- dim(ag_data)[1]
#' endog_data <- ag_data[sample_start:sample_end, 3:5]
#'
#'# The shock is estimated by RZ-18
#' shock <- ag_data[sample_start:sample_end, 7]
#'
#'# Include four lags of the 7-quarter moving average growth rate of GDP
#'# as exogenous variables (see RZ-18)
#' exog_data <- ag_data[sample_start:sample_end, 6]
#'
#'# Use the 7-quarter moving average growth rate of GDP as switching variable
#'# and adjust it to have suffiently long recession periods.
#' switching_variable <- ag_data$GDP_MA[sample_start:sample_end] - 0.8
#'
#'# Estimate local projections
#' results_nl_iv <- lp_nl_iv(endog_data,
#' lags_endog_nl = 3,
#' shock = shock,
#' exog_data = exog_data,
#' lags_exog = 4,
#' trend = 0,
#' confint = 1.96,
#' hor = 20,
#' switching = switching_variable,
#' use_hp = FALSE,
#' gamma = 3)
#'
#'# Show all impulse responses
#' plot(results_nl_iv)
#'
#'# Make and save individual plots
#' plots_nl_iv <- plot_nl(results_nl_iv)
#'
#'# Show single impulse responses
#'# Compare with red line of left plot (lower panel) in Figure 12 in Supplementary Appendix of RZ-18.
#' plot(plots_nl_iv$gg_s1[[1]])
#'# Compare with blue line of left plot (lower panel) in Figure 12 in Supplementary Appendix of RZ-18.
#' plot(plots_nl_iv$gg_s2[[1]])
#'
#'# Show diagnostics. The first element shows the reaction of the first endogenous variable.
#' summary(results_nl_iv)
#'
#'}
#'@author Philipp Adämmer
#'
lp_nl_iv <- function(endog_data,
lags_endog_nl = NULL,
shock = NULL,
cumul_mult = FALSE,
instr = NULL,
exog_data = NULL,
lags_exog = NULL,
contemp_data = NULL,
lags_criterion = NaN,
max_lags = NaN,
trend = NULL,
confint = NULL,
use_nw = TRUE,
nw_lag = NULL,
nw_prewhite = FALSE,
adjust_se = FALSE,
hor = NULL,
switching = NULL,
lag_switching = TRUE,
use_logistic = TRUE,
use_hp = NULL,
lambda = NULL,
gamma = NULL,
num_cores = 1){
# Give warning if 'instr' is used as input name
if(!is.null(instr)){
shock = instr
warning("'instr' is a deprecated input name. Use 'shock' instead.")
}
# Give warning if 'instr' is used as input name
if(isTRUE(cumul_mult) & is.character(lags_criterion)){
stop("The option cumul_mult = TRUE only works for a fixed number of lags.")
}
# Check whether data is a data.frame
if(!(is.data.frame(endog_data))){
stop('The endogenous data has to be a data.frame.')
}
if(!is.null(exog_data) & !(is.data.frame(exog_data))){
stop('The exogenous data has to be a data.frame.')
}
if(!is.null(contemp_data) & !(is.data.frame(contemp_data))){
stop('The exogenous data with contemporary impact has to be a data.frame.')
}
# Check whether 'trend' is given
if(is.null(trend) == TRUE){
stop('Please specify whether and which type of trend to include.')
}
# Check whether trend is correctly specified
if(!(trend %in% c(0,1,2))){
stop('For trend please set 0 = no trend, 1 = trend, 2 = trend and quadratic trend.')
}
# Check whether switching variable is given
if(is.null(switching) == TRUE){
stop('Please provide a switching variable.')
}
# Check whether 'use_hp' is given
if(is.null(use_hp) == TRUE){
stop('Please specify whether to use the HP-filter for the switching variable.')
}
# Check whether lambda is given if 'use_hp == 1'
if((use_hp == 1) &
(is.null(lambda) == TRUE)){
stop('Please specify lambda for the HP-filter.')
}
# Check whether 'gamma' is given
if(isTRUE(use_logistic) & is.null(gamma) == TRUE){
stop('Please specify gamma for the transition function.')
}
# Check whether gamma is positive
if(isTRUE(use_logistic)){
if(gamma < 0){
stop('Gamma has to be a positive number.')
}
}
# Check whether 'confint' is given
if(is.null(confint) == TRUE){
stop('Please specify a value for the width of the confidence bands.')
}
# Check whether width of confidence bands is >=0
if(!(confint >=0)){
stop('The width of the confidence bands has to be >=0.')
}
# Check whether number of horizons is given
if(is.null(hor) == TRUE){
stop('Please specify the number of horizons.')
}
# Check whether wrong lag length criterion is given
if(!(is.nan(lags_criterion) | lags_criterion == 'AICc'|
lags_criterion == 'AIC' | lags_criterion == 'BIC') == TRUE){
stop('Possible lag length criteria are AICc, AIC or BIC or NaN if lag length is specified.')
}
# Check whether lags criterion and fixed number of lags for nonlinear model is given
if((is.character(lags_criterion) == TRUE) &
(!is.na(lags_endog_nl) == TRUE)){
stop('You can not provide a lag criterion (AICc, AIC or BIC) and a fixed number of lags.')
}
# Check whether maximum number of lags is given for lag length criterion
if((is.character(lags_criterion)) &
(is.na(max_lags))){
stop('Please provide a maximum number of lags for the lag length criterion.')
}
# Check whether values for horizons are correct
if(!(hor > 0) | is.nan(hor) | !(hor %% 1 == 0)){
stop('The number of horizons has to be an integer and > 0.')
}
# Check whether lags_exog < 1
if(!is.null(lags_exog)){
if(lags_exog < 1){
stop("'lags_exog' cannot be 0 or negative. If you want to include exogenous data with contemporaneous impact use 'contemp_data'.")
}
}
# Create list to store inputs
specs <- list()
# Specify inputs
specs$lags_endog_nl <- lags_endog_nl
if(is.data.frame(shock)){
specs$shock <- shock } else {
specs$shock <- as.data.frame(shock)
}
if(is.null(exog_data) | is.data.frame(exog_data)){
specs$exog_data <- exog_data} else {
specs$exog_data <- as.data.frame(exog_data)
}
if(is.null(contemp_data) | is.data.frame(contemp_data)){
specs$contemp_data <- contemp_data} else {
specs$contemp_data <- as.data.frame(contemp_data)
}
specs$cumul_mult <- cumul_mult
specs$lags_exog <- lags_exog
specs$lags_criterion <- lags_criterion
specs$max_lags <- max_lags
specs$trend <- trend
specs$confint <- confint
specs$hor <- hor
specs$switching <- switching
specs$lag_switching <- lag_switching
specs$use_logistic <- use_logistic
specs$use_hp <- use_hp
specs$lambda <- lambda
specs$gamma <- gamma
specs$use_nw <- use_nw
specs$nw_prewhite <- nw_prewhite
specs$adjust_se <- adjust_se
specs$nw_lag <- nw_lag
specs$model_type <- 1
# Safe data frame specifications in 'specs for functions
specs$starts <- 1 # Sample Start
specs$ends <- dim(endog_data)[1] # Sample end
specs$column_names <- names(endog_data) # Name endogenous variables
specs$endog <- ncol(endog_data) # Set the number of endogenous variables
# Construct data for nonlinear model
data_nl <- create_nl_data(specs, endog_data)
y_nl <- data_nl[[1]]
x_nl <- data_nl[[2]]
fz <- data_nl[[3]]
# Save endogenous and lagged exogenous data in specs
specs$y_nl <- y_nl
specs$x_nl <- x_nl
# Matrices to store irfs for each horizon
irf_temp_s1_mean <- matrix(NaN, 1, specs$hor)
irf_temp_s1_low <- irf_temp_s1_mean
irf_temp_s1_up <- irf_temp_s1_mean
irf_temp_s2_mean <- matrix(NaN, 1, specs$hor)
irf_temp_s2_low <- irf_temp_s2_mean
irf_temp_s2_up <- irf_temp_s2_mean
# Arrays to store irfs
irf_s1_mean <- matrix(NaN, specs$endog, specs$hor)
irf_s1_low <- irf_s1_mean
irf_s1_up <- irf_s1_mean
irf_s2_mean <- matrix(NaN, specs$endog, specs$hor)
irf_s2_low <- irf_s2_mean
irf_s2_up <- irf_s2_mean
# Make matrix to store OLS diagnostics for each endogenous variable k
diagnost_ols_each_h <- matrix(NaN, specs$hor, 4)
rownames(diagnost_ols_each_h) <- paste("h", 1:specs$hor, sep = " ")
colnames(diagnost_ols_each_h) <- c("R-sqrd.", "Adj. R-sqrd.", "F-stat", " p-value")
# Matrices to store OLS parameters for regime 1 & 2
b1_s1 <- matrix(NaN, specs$endog, specs$endog)
b1_low_s1 <- matrix(NaN, specs$endog, specs$endog)
b1_up_s1 <- matrix(NaN, specs$endog, specs$endog)
b1_s2 <- matrix(NaN, specs$endog, specs$endog)
b1_low_s2 <- matrix(NaN, specs$endog, specs$endog)
b1_up_s2 <- matrix(NaN, specs$endog, specs$endog)
# Define coefficient position to extract regime_1 and regime_2 parameters in loop
start_nl_s1 <- 2
end_nl_s1 <- specs$endog + 1
samp_nl_s1 <- start_nl_s1:end_nl_s1
# Make cluster
if(is.null(num_cores)){
num_cores <- min(specs$endog, parallel::detectCores() - 1)
}
cl <- parallel::makeCluster(num_cores)
doParallel::registerDoParallel(cl)
# Determine whether manual lag lengths are given or have to be determined
if(is.nan(specs$lags_criterion) == TRUE) {
# Loops to estimate local projections
nl_irfs <- foreach( s = 1:specs$endog,
.packages = 'lpirfs') %dopar%{ # Accounts for the reactions of the endogenous variables
for (h in 1:specs$hor){ # Accounts for the horizons
# Check whether cumulative multipliers shall be computed
if(isTRUE(specs$cumul_mult)) {
yy <- dplyr::lead(y_nl, (h - 1)) - dplyr::lag(y_nl, 1)
yy_xx <- cbind(yy, x_nl) %>%
stats::na.omit()
yy <- yy_xx[, 1:(dim(y_nl)[2])]
xx <- yy_xx[, (dim(y_nl)[2] + 1):dim(yy_xx)[2]]
} else {
yy <- y_nl[h:dim(y_nl)[1], ]
xx <- x_nl[1:(dim(x_nl)[1] - h + 1), ]
}
# Check whether data are matrices to correctly extract values
if(!is.matrix(xx)){
xx <- as.matrix(xx)
}
if(!is.matrix(yy)){
yy <- matrix(yy)
}
# Set lag number for Newey-West (1987)
if(is.null(nw_lag)){
lag_nw <- h
} else {
lag_nw <- nw_lag
}
# Get standard errors and point estimates
get_ols_vals <- lpirfs::get_std_err(yy, xx, lag_nw, s, specs)
std_err <- get_ols_vals[[1]]
b <- get_ols_vals[[2]]
# Get diagnostocs for summary
get_diagnost <- lpirfs::ols_diagnost(yy[, s], xx)
diagnost_ols_each_h[h, 1] <- get_diagnost[[3]]
diagnost_ols_each_h[h, 2] <- get_diagnost[[4]]
diagnost_ols_each_h[h, 3] <- get_diagnost[[5]]
diagnost_ols_each_h[h, 4] <- stats::pf(get_diagnost[[5]], get_diagnost[[6]], get_diagnost[[7]], lower.tail = F)
irf_temp_s1_mean[1, h] <- b[2]
irf_temp_s1_low[1, h] <- b[2] - std_err[2]
irf_temp_s1_up[1, h] <- b[2] + std_err[2]
irf_temp_s2_mean[1, h] <- b[3]
irf_temp_s2_low[1, h] <- b[3] - std_err[3]
irf_temp_s2_up[1, h] <- b[3] + std_err[3]
}
list(irf_temp_s1_mean, irf_temp_s1_low, irf_temp_s1_up,
irf_temp_s2_mean, irf_temp_s2_low, irf_temp_s2_up,
diagnost_ols_each_h)
}
# List for OLS diagnostics
diagnostic_list <- list()
# Fill arrays with irfs
for(i in 1:specs$endog){
irf_s1_mean[i , ] <- as.matrix(do.call(rbind, nl_irfs[[i]][1]))
irf_s1_low[i , ] <- as.matrix(do.call(rbind, nl_irfs[[i]][2]))
irf_s1_up[i , ] <- as.matrix(do.call(rbind, nl_irfs[[i]][3]))
irf_s2_mean[i , ] <- as.matrix(do.call(rbind, nl_irfs[[i]][4]))
irf_s2_low[i , ] <- as.matrix(do.call(rbind, nl_irfs[[i]][5]))
irf_s2_up[i , ] <- as.matrix(do.call(rbind, nl_irfs[[i]][6]))
diagnostic_list[[i]] <- nl_irfs[[i]][[7]]
}
################################################################################
} else {
################################################################################
# Convert lag length criterion to number for Rcpp loop
lag_crit <- switch(specs$lags_criterion,
'AICc'= 1,
'AIC' = 2,
'BIC' = 3)
# Make list to store chosen lags
chosen_lags <- list()
# Make matrix to store selected lags
chosen_lags_h <- matrix(NaN, specs$hor, 1)
# --- Loops to estimate local projections.
nl_irfs <- foreach(s = 1:specs$endog,
.packages = 'lpirfs') %dopar% { # Accounts for shocks
for (h in 1:specs$hor){ # Accounts for the horizons
# Set lag number for Newey-West (1987)
if(is.null(nw_lag)){
lag_nw <- h
} else {
lag_nw <- nw_lag
}
# Find optimal lag length
n_obs <- nrow(y_nl[[1]]) - h + 1 # Number of observations for model with lag one
val_criterion <- lpirfs::get_vals_lagcrit(y_nl, x_nl, lag_crit, h, s,
specs$max_lags, n_obs)
lag_choice <- which.min(val_criterion)
yy <- y_nl[[lag_choice]][, s]
yy <- yy[h: length(yy)]
xx <- x_nl[[lag_choice]]
xx <- xx[1:(dim(xx)[1] - h + 1),]
# Get standard errors and point estimates
get_ols_vals <- lpirfs::get_std_err(yy, xx, lag_nw, 1, specs)
std_err <- get_ols_vals[[1]]
b <- get_ols_vals[[2]]
# Get diagnostocs for summary
get_diagnost <- lpirfs::ols_diagnost(yy, xx)
diagnost_ols_each_h[h, 1] <- get_diagnost[[3]]
diagnost_ols_each_h[h, 2] <- get_diagnost[[4]]
diagnost_ols_each_h[h, 3] <- get_diagnost[[5]]
diagnost_ols_each_h[h, 4] <- stats::pf(get_diagnost[[5]], get_diagnost[[6]], get_diagnost[[7]], lower.tail = F)
chosen_lags_h[h, 1] <- lag_choice
irf_temp_s1_mean[1, h] <- b[2]
irf_temp_s1_low[1, h] <- b[2] - std_err[2]
irf_temp_s1_up[1, h] <- b[2] + std_err[2]
irf_temp_s2_mean[1, h] <- b[3]
irf_temp_s2_low[1, h] <- b[3] - std_err[3]
irf_temp_s2_up[1, h] <- b[3] + std_err[3]
}
list(irf_temp_s1_mean, irf_temp_s1_low, irf_temp_s1_up,
irf_temp_s2_mean, irf_temp_s2_low, irf_temp_s2_up,
diagnost_ols_each_h,
chosen_lags_h)
}
# List for OLS diagnostics
diagnostic_list <- list()
# Fill arrays with irfs
for(i in 1:specs$endog){
irf_s1_mean[i , ] <- as.matrix(do.call(rbind, nl_irfs[[i]][1]))
irf_s1_low[i , ] <- as.matrix(do.call(rbind, nl_irfs[[i]][2]))
irf_s1_up[i , ] <- as.matrix(do.call(rbind, nl_irfs[[i]][3]))
irf_s2_mean[i , ] <- as.matrix(do.call(rbind, nl_irfs[[i]][4]))
irf_s2_low[i , ] <- as.matrix(do.call(rbind, nl_irfs[[i]][5]))
irf_s2_up[i , ] <- as.matrix(do.call(rbind, nl_irfs[[i]][6]))
diagnostic_list[[i]] <- nl_irfs[[i]][[7]]
chosen_lags[[i]] <- nl_irfs[[i]][[8]]
}
# Name the list of diagnostics
names(diagnostic_list) <- paste("Endog. Variable:", specs$column_names , sep = " ")
names(chosen_lags) <- paste("Endog. Variable:", specs$column_names , sep = " ")
specs$chosen_lags <- chosen_lags
}
# Close cluster
parallel::stopCluster(cl)
result <- list(irf_s1_mean = irf_s1_mean,
irf_s1_low = irf_s1_low,
irf_s1_up = irf_s1_up,
irf_s2_mean = irf_s2_mean,
irf_s2_low = irf_s2_low,
irf_s2_up = irf_s2_up,
diagnostic_list = diagnostic_list,
fz = fz,
specs = specs)
# Give object S3 name
class(result) <- "lpirfs_nl_iv_obj"
return(result)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.