#' Compute the required power for binary response, a SNP G and two continuous covariates that are conditionally dependent given G, using the Semi-Sim method.
#'
#' @param n An integer number that indicates the sample size.
#' @param B An integer number that indicates the number of simulated sample to approximate the fisher information matrix, by default is 10000.
#' @param parameters Refer to SPCompute::Compute_Power_Sim; Except betaE, muE, sigmaE and gammaG have to be vectors of length 2. If exists, the binary covariate is assumed to be the first covariate. The parameter gammaE is a single parameter specifying the conditional dependency between E1 and E2 given G (i.e. coefficient of E1 when regressing E2 on E1 and G).
#' @param mode A string of either "additive", "dominant" or "recessive", indicating the genetic mode, by default is "additive".
#' @param alpha A numeric value that denotes the significance level used in the study, by default is 0.05.
#' @param seed An integer number that indicates the seed used for the simulation to compute the approximate fisher information matrix, by default is 123.
#' @param searchSizeBeta0 The interval radius for the numerical search of beta0, by default is 8. Setting to higher values may solve some numerical problems at the cost of longer runtime.
#' @param LargePowerApproxi TRUE or FALSE indicates whether to use the large power approximation formula.
#' @return The power that can be achieved at the given sample size (using semi-sim method).
#' @noRd
Compute_Power_Sim_BCC_dep <- function(n, B = 10000, parameters, mode = "additive", alpha = 0.05, seed = 123, searchSizeBeta0 = 8, LargePowerApproxi = FALSE){
preva <- parameters$preva
betaG <- parameters$betaG
gammaE1 <- parameters$gammaE
gammaG1 <- parameters$gammaG[1]
muE1 <- parameters$muE[1]
sigmaE1 <- parameters$sigmaE[1]
betaE1 <- parameters$betaE[1]
gammaG2 <- parameters$gammaG[2]
muE2 <- parameters$muE[2]
sigmaE2 <- parameters$sigmaE[2]
betaE2 <- parameters$betaE[2]
if(mode == "additive"){
pG <- parameters$pG
qG <- 1 - pG
ProbG <- c((qG^2), (2 * pG * qG), (pG^2))
EG <- sum(c(0,1,2) * ProbG)
EG2 <- sum(c(0,1,4) * ProbG)
varG <- EG2 - (EG^2)
gamma01 <- muE1 - gammaG1 * EG ## first second-stage GLM
gamma02 <- muE2 - gammaG2 * EG - gammaE1 * muE1 ## second second-stage GLM
Cov_Mat <- diag(x = c(varG, (sigmaE1^2), (sigmaE2^2)), nrow = 3, ncol = 3)
Cov_Mat[1,2] <- gammaG1 * varG; Cov_Mat[1,3] <- gammaG2 * varG + gammaE1 * Cov_Mat[1,2];
Cov_Mat[2,3] <- gammaG2 * Cov_Mat[1,2] + gammaE1 * (sigmaE1^2)
Cov_Mat <- Matrix::forceSymmetric(Cov_Mat)
h2_stage1 <- as.numeric(t(c(betaG, betaE1, betaE2)) %*% Cov_Mat %*% t(t(c(betaG, betaE1, betaE2))))
h2_stage22 <- as.numeric(t(c(gammaG2, gammaE1, 0)) %*% Cov_Mat %*% t(t(c(gammaG2, gammaE1, 0))))
h2_stage21 <- as.numeric(t(c(gammaG1, 0, 0)) %*% Cov_Mat %*% t(t(c(gammaG1, 0, 0))))
I <- matrix(data = 0, nrow = 4, ncol = 4)
if((sigmaE1^2) <= h2_stage21){return(message("Error: SigmaE[1] must be larger to be compatible with other parameters"))}
if((sigmaE2^2) <= h2_stage22){return(message("Error: SigmaE[2] must be larger to be compatible with other parameters"))}
sigmaError1 <- sqrt((sigmaE1^2) - h2_stage21)
sigmaError2 <- sqrt((sigmaE2^2) - h2_stage22)
solveForbeta0_add_con <- function(preva, betaG, betaE1, betaE2, pG, gammaG1, gammaG2, gammaE1){
qG <- 1 - pG
ComputeP <- function(beta0){
set.seed(seed)
G <- sample(c(0,1,2), size = B, replace = TRUE, prob = c(qG^2, 2*pG*qG, pG^2))
E1 <- gamma01 + gammaG1 * G + stats::rnorm(B, sd = sigmaError1)
E2 <- gamma02 + gammaG2 * G + gammaE1 * E1 + stats::rnorm(B, sd = sigmaError2)
y <- beta0 + betaG * G + betaE1 * E1 + betaE2 * E2 + stats::rlogis(B)
P <- mean(ifelse(y > 0, 1, 0))
P - preva
}
stats::uniroot(ComputeP, c(-searchSizeBeta0, searchSizeBeta0))$root
}
beta0 <- solveForbeta0_add_con(preva, betaG, betaE1, betaE2, pG, gammaG1, gammaG2, gammaE1)
### Simulate for SE: by averaging B times
set.seed(seed)
for (i in 1:B) {
G <- sample(c(0,1,2), size = 1, replace = TRUE, prob = c(qG^2,2*pG*qG, pG^2))
E1 <- gamma01 + gammaG1*G + stats::rnorm(1,sd = sigmaError1)
E2 <- gamma02 + gammaG2*G + gammaE1 * E1 + stats::rnorm(1,sd = sigmaError2)
X <- matrix(c(1,G,E1,E2), ncol = 1)
eta <- beta0 + betaG*G + betaE1*E1 + betaE2*E2
weight <- stats::dlogis(eta)
I <- I + weight* X %*% t(X)
}
I <- I/B
if(LargePowerApproxi){
SE <- sqrt((solve(I)[2,2]))/sqrt(n)
return(stats::pnorm(-stats::qnorm(1-(alpha/2)) + betaG/SE))
}
else{
compute_power <- function(n){
### Once know this (expected) single I, scale by dividing sqrt(n): n is sample size
SE = sqrt((solve(I)[2,2]))/sqrt(n)
### Once know this SE of betaG hat, compute its power at this given sample size n:
Power = stats::pnorm(-stats::qnorm(1-(alpha/2)) + betaG/SE ) + stats::pnorm(-stats::qnorm(1-(alpha/2)) - betaG/SE)
Power
}
compute_power(n)
}
}
else if(mode == "dominant"){
pG <- 2*parameters$pG*(1-parameters$pG) + parameters$pG^2
qG <- 1 - pG
ProbG <- c(qG, pG)
EG <- sum(c(0,1) * ProbG)
EG2 <- sum(c(0,1) * ProbG)
varG <- EG2 - (EG^2)
gamma01 <- muE1 - gammaG1 * EG ## first second-stage GLM
gamma02 <- muE2 - gammaG2 * EG - gammaE1 * muE1 ## second second-stage GLM
Cov_Mat <- diag(x = c(varG, (sigmaE1^2), (sigmaE2^2)), nrow = 3, ncol = 3)
Cov_Mat[1,2] <- gammaG1 * varG; Cov_Mat[1,3] <- gammaG2 * varG + gammaE1 * Cov_Mat[1,2];
Cov_Mat[2,3] <- gammaG2 * Cov_Mat[1,2] + gammaE1 * (sigmaE1^2)
Cov_Mat <- Matrix::forceSymmetric(Cov_Mat)
h2_stage1 <- as.numeric(t(c(betaG, betaE1, betaE2)) %*% Cov_Mat %*% t(t(c(betaG, betaE1, betaE2))))
h2_stage22 <- as.numeric(t(c(gammaG2, gammaE1, 0)) %*% Cov_Mat %*% t(t(c(gammaG2, gammaE1, 0))))
h2_stage21 <- as.numeric(t(c(gammaG1, 0, 0)) %*% Cov_Mat %*% t(t(c(gammaG1, 0, 0))))
I <- matrix(data = 0, nrow = 4, ncol = 4)
if((sigmaE1^2) <= h2_stage21){return(message("Error: SigmaE[1] must be larger to be compatible with other parameters"))}
if((sigmaE2^2) <= h2_stage22){return(message("Error: SigmaE[2] must be larger to be compatible with other parameters"))}
sigmaError1 <- sqrt((sigmaE1^2) - h2_stage21)
sigmaError2 <- sqrt((sigmaE2^2) - h2_stage22)
solveForbeta0_dom_con <- function(preva, betaG, betaE1, betaE2, pG, gammaG1, gammaG2, gammaE1){
qG <- 1 - pG
ComputeP <- function(beta0){
set.seed(seed)
G <- sample(c(0,1), size = B, replace = TRUE, prob = c(qG,pG))
E1 <- gamma01 + gammaG1 * G + stats::rnorm(B, sd = sigmaError1)
E2 <- gamma02 + gammaG2 * G + gammaE1 * E1 + stats::rnorm(B, sd = sigmaError2)
y <- beta0 + betaG * G + betaE1 * E1 + betaE2 * E2 + stats::rlogis(B)
P <- mean(ifelse(y > 0, 1, 0))
P - preva
}
stats::uniroot(ComputeP, c(-searchSizeBeta0, searchSizeBeta0))$root
}
beta0 <- solveForbeta0_dom_con(preva, betaG, betaE1, betaE2, pG, gammaG1, gammaG2, gammaE1)
### Simulate for SE: by averaging B times
I <- matrix(data = 0, nrow = 4, ncol = 4)
set.seed(seed)
for (i in 1:B) {
G <- sample(c(0,1), size = 1, replace = TRUE, prob = c(qG, pG))
E1 <- gamma01 + gammaG1*G + stats::rnorm(1,sd = sigmaError1)
E2 <- gamma02 + gammaG2*G + gammaE1 * E1 + stats::rnorm(1,sd = sigmaError2)
X <- matrix(c(1,G,E1,E2), ncol = 1)
eta <- beta0 + betaG*G + betaE1*E1 + betaE2*E2
weight <- stats::dlogis(eta)
I <- I + weight* X %*% t(X)
}
I <- I/B
if(LargePowerApproxi){
SE <- sqrt((solve(I)[2,2]))/sqrt(n)
return(stats::pnorm(-stats::qnorm(1-(alpha/2)) + betaG/SE))
}
else{
compute_power <- function(n){
### Once know this (expected) single I, scale by dividing sqrt(n): n is sample size
SE = sqrt((solve(I)[2,2]))/sqrt(n)
### Once know this SE of betaG hat, compute its power at this given sample size n:
Power = stats::pnorm(-stats::qnorm(1-(alpha/2)) + betaG/SE ) + stats::pnorm(-stats::qnorm(1-(alpha/2)) - betaG/SE)
Power
}
compute_power(n)
}
}
else if(mode == "recessive") {
ProbG <- c(qG, pG)
EG <- sum(c(0,1) * ProbG)
EG2 <- sum(c(0,1) * ProbG)
varG <- EG2 - (EG^2)
gamma01 <- muE1 - gammaG1 * EG ## first second-stage GLM
gamma02 <- muE2 - gammaG2 * EG - gammaE1 * muE1 ## second second-stage GLM
Cov_Mat <- diag(x = c(varG, (sigmaE1^2), (sigmaE2^2)), nrow = 3, ncol = 3)
Cov_Mat[1,2] <- gammaG1 * varG; Cov_Mat[1,3] <- gammaG2 * varG + gammaE1 * Cov_Mat[1,2];
Cov_Mat[2,3] <- gammaG2 * Cov_Mat[1,2] + gammaE1 * (sigmaE1^2)
Cov_Mat <- Matrix::forceSymmetric(Cov_Mat)
h2_stage1 <- as.numeric(t(c(betaG, betaE1, betaE2)) %*% Cov_Mat %*% t(t(c(betaG, betaE1, betaE2))))
h2_stage22 <- as.numeric(t(c(gammaG2, gammaE1, 0)) %*% Cov_Mat %*% t(t(c(gammaG2, gammaE1, 0))))
h2_stage21 <- as.numeric(t(c(gammaG1, 0, 0)) %*% Cov_Mat %*% t(t(c(gammaG1, 0, 0))))
I <- matrix(data = 0, nrow = 4, ncol = 4)
if((sigmaE1^2) <= h2_stage21){return(message("Error: SigmaE[1] must be larger to be compatible with other parameters"))}
if((sigmaE2^2) <= h2_stage22){return(message("Error: SigmaE[2] must be larger to be compatible with other parameters"))}
sigmaError1 <- sqrt((sigmaE1^2) - h2_stage21)
sigmaError2 <- sqrt((sigmaE2^2) - h2_stage22)
solveForbeta0_rec_con <- function(preva, betaG, betaE1, betaE2, pG, gammaG1, gammaG2, gammaE1){
qG <- 1 - pG
ComputeP <- function(beta0){
set.seed(seed)
G <- sample(c(0,1), size = B, replace = TRUE, prob = c(qG,pG))
E1 <- gamma01 + gammaG1 * G + stats::rnorm(B, sd = sigmaError1)
E2 <- gamma02 + gammaG2 * G + gammaE1 * E1 + stats::rnorm(B, sd = sigmaError2)
y <- beta0 + betaG * G + betaE1 * E1 + betaE2 * E2 + stats::rlogis(B)
P <- mean(ifelse(y > 0, 1, 0))
P - preva
}
stats::uniroot(ComputeP, c(-searchSizeBeta0, searchSizeBeta0))$root
}
beta0 <- solveForbeta0_rec_con(preva, betaG, betaE1, betaE2, pG, gammaG1, gammaG2, gammaE1)
### Simulate for SE: by averaging B times
set.seed(seed)
for (i in 1:B) {
G <- sample(c(0,1), size = 1, replace = TRUE, prob = c(qG, pG))
E1 <- gamma01 + gammaG1*G + stats::rnorm(1,sd = sigmaError1)
E2 <- gamma02 + gammaG2*G + gammaE1*E1 + stats::rnorm(1,sd = sigmaError2)
X <- matrix(c(1,G,E1, E2), ncol = 1)
eta <- beta0 + betaG*G + betaE1*E1 + betaE2*E2
weight <- stats::dlogis(eta)
I <- I + weight* X %*% t(X)
}
I <- I/B
if(LargePowerApproxi){
SE <- sqrt((solve(I)[2,2]))/sqrt(n)
return(stats::pnorm(-stats::qnorm(1-(alpha/2)) + betaG/SE))
}
else{
compute_power <- function(n){
### Once know this (expected) single I, scale by dividing sqrt(n): n is sample size
SE = sqrt((solve(I)[2,2]))/sqrt(n)
### Once know this SE of betaG hat, compute its power at this given sample size n:
Power = stats::pnorm(-stats::qnorm(1-(alpha/2)) + betaG/SE ) + stats::pnorm(-stats::qnorm(1-(alpha/2)) - betaG/SE)
Power
}
compute_power(n)
}
}
}
#' Compute the required power for binary response, a SNP G and two continuous covariates that are conditionally dependent given G, using the empirical method.
#'
#' @param n An integer number that indicates the sample size.
#' @param B An integer number that indicates the number of simulated sample, by default is 10000.
#' @param parameters Refer to SPCompute::Compute_Power_Sim; Except betaE, muE, sigmaE and gammaG have to be vectors of length 2. If exists, the binary covariate is assumed to be the first covariate. The parameter gammaE is a single parameter specifying the conditional dependency between E1 and E2 given G (i.e. coefficient of E1 when regressing E2 on E1 and G).
#' @param mode A string of either "additive", "dominant" or "recessive", indicating the genetic mode, by default is "additive".
#' @param alpha A numeric value that denotes the significance level used in the study, by default is 0.05.
#' @param searchSizeBeta0 The interval radius for the numerical search of beta0, by default is 8. Setting to higher values may solve some numerical problems at the cost of longer runtime.
#' @param seed An integer number that indicates the seed used for the simulation, by default is 123.
#' @return The power that can be achieved at the given sample size (computed from empirical power).
#' @noRd
Compute_Power_Emp_BCC_dep <- function(n, B = 10000, parameters, mode = "additive", alpha = 0.05, seed = 123, searchSizeBeta0 = 8){
preva <- parameters$preva
betaG <- parameters$betaG
gammaE1 <- parameters$gammaE
gammaG1 <- parameters$gammaG[1]
muE1 <- parameters$muE[1]
sigmaE1 <- parameters$sigmaE[1]
betaE1 <- parameters$betaE[1]
gammaG2 <- parameters$gammaG[2]
muE2 <- parameters$muE[2]
sigmaE2 <- parameters$sigmaE[2]
betaE2 <- parameters$betaE[2]
if(mode == "additive"){
pG <- parameters$pG
qG <- 1 - pG
ProbG <- c((qG^2), (2 * pG * qG), (pG^2))
EG <- sum(c(0,1,2) * ProbG)
EG2 <- sum(c(0,1,4) * ProbG)
varG <- EG2 - (EG^2)
gamma01 <- muE1 - gammaG1 * EG ## first second-stage GLM
gamma02 <- muE2 - gammaG2 * EG - gammaE1 * muE1 ## second second-stage GLM
Cov_Mat <- diag(x = c(varG, (sigmaE1^2), (sigmaE2^2)), nrow = 3, ncol = 3)
Cov_Mat[1,2] <- gammaG1 * varG; Cov_Mat[1,3] <- gammaG2 * varG + gammaE1 * Cov_Mat[1,2];
Cov_Mat[2,3] <- gammaG2 * Cov_Mat[1,2] + gammaE1 * (sigmaE1^2)
Cov_Mat <- Matrix::forceSymmetric(Cov_Mat)
h2_stage1 <- as.numeric(t(c(betaG, betaE1, betaE2)) %*% Cov_Mat %*% t(t(c(betaG, betaE1, betaE2))))
h2_stage22 <- as.numeric(t(c(gammaG2, gammaE1, 0)) %*% Cov_Mat %*% t(t(c(gammaG2, gammaE1, 0))))
h2_stage21 <- as.numeric(t(c(gammaG1, 0, 0)) %*% Cov_Mat %*% t(t(c(gammaG1, 0, 0))))
I <- matrix(data = 0, nrow = 4, ncol = 4)
if((sigmaE1^2) <= h2_stage21){return(message("Error: SigmaE[1] must be larger to be compatible with other parameters"))}
if((sigmaE2^2) <= h2_stage22){return(message("Error: SigmaE[2] must be larger to be compatible with other parameters"))}
sigmaError1 <- sqrt((sigmaE1^2) - h2_stage21)
sigmaError2 <- sqrt((sigmaE2^2) - h2_stage22)
solveForbeta0_add_con <- function(preva, betaG, betaE1, betaE2, pG, gammaG1, gammaG2, gammaE1){
qG <- 1 - pG
ComputeP <- function(beta0){
set.seed(seed)
G <- sample(c(0,1,2), size = B, replace = TRUE, prob = c(qG^2, 2*pG*qG, pG^2))
E1 <- gamma01 + gammaG1 * G + stats::rnorm(B, sd = sigmaError1)
E2 <- gamma02 + gammaG2 * G + gammaE1 * E1 + stats::rnorm(B, sd = sigmaError2)
y <- beta0 + betaG * G + betaE1 * E1 + betaE2 * E2 + stats::rlogis(B)
P <- mean(ifelse(y > 0, 1, 0))
P - preva
}
stats::uniroot(ComputeP, c(-searchSizeBeta0, searchSizeBeta0))$root
}
beta0 <- solveForbeta0_add_con(preva, betaG, betaE1, betaE2, pG, gammaG1, gammaG2, gammaE1)
set.seed(seed)
correct <- c()
for (i in 1:B) {
G <- sample(c(0,1,2), size = n, replace = TRUE, prob = c(qG^2,2*pG*qG, pG^2))
E1 <- gamma01 + gammaG1*G + stats::rnorm(n,sd = sigmaError1)
E2 <- gamma02 + gammaG2*G + gammaE1*E1 + stats::rnorm(n,sd = sigmaError2)
y <- beta0 + betaG * G + betaE1 * E1 + betaE2 * E2 + stats::rlogis(n)
y <- ifelse(y > 0, 1, 0)
correct[i] <- summary(stats::glm(y~G + E1 + E2, family = stats::binomial("logit")))$coefficients[2,4] <= alpha
}
Power <- sum(correct)/B
}
else if(mode == "dominant"){
pG <- 2*parameters$pG*(1-parameters$pG) + parameters$pG^2
qG <- 1 - pG
ProbG <- c(qG, pG)
EG <- sum(c(0,1) * ProbG)
EG2 <- sum(c(0,1) * ProbG)
varG <- EG2 - (EG^2)
gamma01 <- muE1 - gammaG1 * EG ## first second-stage GLM
gamma02 <- muE2 - gammaG2 * EG - gammaE1 * muE1 ## second second-stage GLM
Cov_Mat <- diag(x = c(varG, (sigmaE1^2), (sigmaE2^2)), nrow = 3, ncol = 3)
Cov_Mat[1,2] <- gammaG1 * varG; Cov_Mat[1,3] <- gammaG2 * varG + gammaE1 * Cov_Mat[1,2];
Cov_Mat[2,3] <- gammaG2 * Cov_Mat[1,2] + gammaE1 * (sigmaE1^2)
Cov_Mat <- Matrix::forceSymmetric(Cov_Mat)
h2_stage1 <- as.numeric(t(c(betaG, betaE1, betaE2)) %*% Cov_Mat %*% t(t(c(betaG, betaE1, betaE2))))
h2_stage22 <- as.numeric(t(c(gammaG2, gammaE1, 0)) %*% Cov_Mat %*% t(t(c(gammaG2, gammaE1, 0))))
h2_stage21 <- as.numeric(t(c(gammaG1, 0, 0)) %*% Cov_Mat %*% t(t(c(gammaG1, 0, 0))))
I <- matrix(data = 0, nrow = 4, ncol = 4)
if((sigmaE1^2) <= h2_stage21){return(message("Error: SigmaE[1] must be larger to be compatible with other parameters"))}
if((sigmaE2^2) <= h2_stage22){return(message("Error: SigmaE[2] must be larger to be compatible with other parameters"))}
sigmaError1 <- sqrt((sigmaE1^2) - h2_stage21)
sigmaError2 <- sqrt((sigmaE2^2) - h2_stage22)
solveForbeta0_dom_con <- function(preva, betaG, betaE1, betaE2, pG, gammaG1, gammaG2, gammaE1){
qG <- 1 - pG
ComputeP <- function(beta0){
set.seed(seed)
G <- sample(c(0,1), size = B, replace = TRUE, prob = c(qG,pG))
E1 <- gamma01 + gammaG1 * G + stats::rnorm(B, sd = sigmaError1)
E2 <- gamma02 + gammaG2 * G + gammaE1 * E1 + stats::rnorm(B, sd = sigmaError2)
y <- beta0 + betaG * G + betaE1 * E1 + betaE2 * E2 + stats::rlogis(B)
P <- mean(ifelse(y > 0, 1, 0))
P - preva
}
stats::uniroot(ComputeP, c(-searchSizeBeta0, searchSizeBeta0))$root
}
beta0 <- solveForbeta0_dom_con(preva, betaG, betaE1, betaE2, pG, gammaG1, gammaG2, gammaE1)
set.seed(seed)
correct <- c()
for (i in 1:B) {
G <- sample(c(0,1), size = n, replace = TRUE, prob = c(qG, pG))
E1 <- gamma01 + gammaG1*G + stats::rnorm(n,sd = sigmaError1)
E2 <- gamma02 + gammaG2*G + gammaE1*E1 + stats::rnorm(n,sd = sigmaError2)
y <- beta0 + betaG * G + betaE1 * E1 + betaE2 * E2 + stats::rlogis(n)
y <- ifelse(y > 0, 1, 0)
correct[i] <- summary(stats::glm(y~G + E1 + E2, family = stats::binomial("logit")))$coefficients[2,4] <= alpha
}
Power <- sum(correct)/B
}
else if(mode == "recessive") {
ProbG <- c(qG, pG)
EG <- sum(c(0,1) * ProbG)
EG2 <- sum(c(0,1) * ProbG)
varG <- EG2 - (EG^2)
gamma01 <- muE1 - gammaG1 * EG ## first second-stage GLM
gamma02 <- muE2 - gammaG2 * EG - gammaE1 * muE1 ## second second-stage GLM
Cov_Mat <- diag(x = c(varG, (sigmaE1^2), (sigmaE2^2)), nrow = 3, ncol = 3)
Cov_Mat[1,2] <- gammaG1 * varG; Cov_Mat[1,3] <- gammaG2 * varG + gammaE1 * Cov_Mat[1,2];
Cov_Mat[2,3] <- gammaG2 * Cov_Mat[1,2] + gammaE1 * (sigmaE1^2)
Cov_Mat <- Matrix::forceSymmetric(Cov_Mat)
h2_stage1 <- as.numeric(t(c(betaG, betaE1, betaE2)) %*% Cov_Mat %*% t(t(c(betaG, betaE1, betaE2))))
h2_stage22 <- as.numeric(t(c(gammaG2, gammaE1, 0)) %*% Cov_Mat %*% t(t(c(gammaG2, gammaE1, 0))))
h2_stage21 <- as.numeric(t(c(gammaG1, 0, 0)) %*% Cov_Mat %*% t(t(c(gammaG1, 0, 0))))
I <- matrix(data = 0, nrow = 4, ncol = 4)
if((sigmaE1^2) <= h2_stage21){return(message("Error: SigmaE[1] must be larger to be compatible with other parameters"))}
if((sigmaE2^2) <= h2_stage22){return(message("Error: SigmaE[2] must be larger to be compatible with other parameters"))}
sigmaError1 <- sqrt((sigmaE1^2) - h2_stage21)
sigmaError2 <- sqrt((sigmaE2^2) - h2_stage22)
solveForbeta0_rec_con <- function(preva, betaG, betaE1, betaE2, pG, gammaG1, gammaG2, gammaE1){
qG <- 1 - pG
ComputeP <- function(beta0){
set.seed(seed)
G <- sample(c(0,1), size = B, replace = TRUE, prob = c(qG,pG))
E1 <- gamma01 + gammaG1 * G + stats::rnorm(B, sd = sigmaError1)
E2 <- gamma02 + gammaG2 * G + gammaE1 * E1 + stats::rnorm(B, sd = sigmaError2)
y <- beta0 + betaG * G + betaE1 * E1 + betaE2 * E2 + stats::rlogis(B)
P <- mean(ifelse(y > 0, 1, 0))
P - preva
}
stats::uniroot(ComputeP, c(-searchSizeBeta0, searchSizeBeta0))$root
}
beta0 <- solveForbeta0_rec_con(preva, betaG, betaE1, betaE2, pG, gammaG1, gammaG2, gammaE1)
set.seed(seed)
correct <- c()
for (i in 1:B) {
G <- sample(c(0,1), size = n, replace = TRUE, prob = c(qG, pG))
E1 <- gamma01 + gammaG1*G + stats::rnorm(n,sd = sigmaError1)
E2 <- gamma02 + gammaG2*G + stats::rnorm(n,sd = sigmaError2)
y <- beta0 + betaG * G + betaE1 * E1 + betaE2 * E2 + stats::rlogis(n)
y <- ifelse(y > 0, 1, 0)
correct[i] <- summary(stats::glm(y~G + E1 + E2, family = stats::binomial("logit")))$coefficients[2,4] <= alpha
}
Power <- sum(correct)/B
}
Power
}
#' Compute the required power for binary response, a SNP G and two binary covariates that are conditionally dependent given G, using the Semi-Sim method.
#'
#' @param n An integer number that indicates the sample size.
#' @param B An integer number that indicates the number of simulated sample to approximate the fisher information matrix, by default is 10000.
#' @param parameters Refer to SPCompute::Compute_Power_Sim; Except betaE, pE and gammaG have to be vectors of length 2. If exists, the binary covariate is assumed to be the first covariate. The parameter gammaE is a single parameter specifying the conditional dependency between E1 and E2 given G (i.e. coefficient of E1 when regressing E2 on E1 and G).
#' @param mode A string of either "additive", "dominant" or "recessive", indicating the genetic mode, by default is "additive".
#' @param alpha A numeric value that denotes the significance level used in the study, by default is 0.05.
#' @param seed An integer number that indicates the seed used for the simulation to compute the approximate fisher information matrix, by default is 123.
#' @param searchSizeBeta0 The interval radius for the numerical search of beta0, by default is 8. Setting to higher values may solve some numerical problems at the cost of longer runtime.
#' @param searchSizeGamma0 The interval radius for the numerical search of gamma0, by default is 8. Setting to higher values may solve some numerical problems at the cost of longer runtime.
#' @param LargePowerApproxi TRUE or FALSE indicates whether to use the large power approximation formula.
#' @return The power that can be achieved at the given sample size (using semi-sim method).
#' @noRd
Compute_Power_Sim_BBB_dep <- function(n, B = 10000, parameters, mode = "additive", alpha = 0.05, seed = 123, searchSizeBeta0 = 8, searchSizeGamma0 = 8, LargePowerApproxi = FALSE){
ComputeEgivenG <- function(gamma0,gammaG,G, E = 1){
PEG <- (exp(gamma0 + gammaG * G)^E)/(1+exp(gamma0 + gammaG * G))
PEG
}
ComputeE2givenGE1 <- function(gamma0,gammaG, gammaE1,G, E1, E2 = 1){
PEG <- (exp(gamma0 + gammaG * G + gammaE1 * E1)^E2)/(1+exp(gamma0 + gammaG * G + gammaE1 * E1))
PEG
}
ComputeYgivenGE <- function(beta0,betaG, betaE1, betaE2, G, E1, E2, Y = 1){
PYGE <- (exp(beta0 + betaG * G + betaE1 * E1 + betaE2 * E2)^Y)/(1 + exp(beta0 + betaG * G + betaE1 * E1 + betaE2 * E2))
PYGE
}
preva <- parameters$preva
gammaG1 <- parameters$gammaG[1]
pE1 <- parameters$pE[1]
betaE1 <- parameters$betaE[1]
gammaG2 <- parameters$gammaG[2]
pE2 <- parameters$pE[2]
betaE2 <- parameters$betaE[2]
betaG <- parameters$betaG
gammaE1 <- parameters$gammaE
if(mode == "additive"){
pG <- parameters$pG
qG <- 1 - pG
solveForgamma0 <- function(pE,gammaG, pG){
qG <- 1 - pG
ComputePE <- function(gamma0){
PE <- ComputeEgivenG(gamma0,gammaG,G = 0) * (qG^2) + ComputeEgivenG(gamma0,gammaG,G = 2) * (pG^2) +
ComputeEgivenG(gamma0,gammaG,G = 1) * (2*qG*pG)
PE - pE
}
stats::uniroot(ComputePE, c(-searchSizeGamma0, searchSizeGamma0))$root
}
solveForgamma02 <- function(pE,gammaG, gammaE1, pG, gamma01){
qG <- 1 - pG
xvec1 = c(qG^2, (2 * qG * pG), pG^2)
xvec2 = c(ComputeEgivenG(gamma0 = gamma01,gammaG = gammaG,G = 0, E = 1), ComputeEgivenG(gamma0 = gamma01,gammaG = gammaG,G = 1, E = 1), ComputeEgivenG(gamma0 = gamma01,gammaG = gammaG,G = 2, E = 1))
ComputePE <- function(gamma0){
xvec30 = c(ComputeE2givenGE1(gamma0 = gamma0, gammaG = gammaG, G = 0, E2 = 1, E1 = 0, gammaE1 = gammaE1), ComputeE2givenGE1(gamma0 = gamma0, gammaG = gammaG, G = 1, E2 = 1, E1 = 0, gammaE1 = gammaE1), ComputeE2givenGE1(gamma0 = gamma0, gammaG = gammaG, G = 2, E2 = 1, E1 = 0, gammaE1 = gammaE1))
xvec31 = c(ComputeE2givenGE1(gamma0 = gamma0, gammaG = gammaG, G = 0, E2 = 1, E1 = 1, gammaE1 = gammaE1), ComputeE2givenGE1(gamma0 = gamma0, gammaG = gammaG, G = 1, E2 = 1, E1 = 1, gammaE1 = gammaE1), ComputeE2givenGE1(gamma0 = gamma0, gammaG = gammaG, G = 2, E2 = 1, E1 = 1, gammaE1 = gammaE1))
PE <- sum(xvec1 * xvec2 * xvec31) + sum(xvec1 * (1-xvec2) * xvec30)
PE - pE
}
stats::uniroot(ComputePE, c(-searchSizeGamma0, searchSizeGamma0))$root
}
solveForbeta0_add <- function(preva, betaG, betaE1, betaE2, pG, pE1, pE2, gammaG1, gammaG2, gammaE1){
qG <- 1 - pG
gamma01 <- solveForgamma0(pE1,gammaG1, pG)
gamma02 <- solveForgamma02(pE2,gammaG2, gammaE1, pG, gamma01)
ComputeP <- function(beta0){
P000 <- ComputeYgivenGE(beta0,betaG, betaE1, betaE2, G = 0, E1 = 0, E2 = 0) * ComputeE2givenGE1(gamma02,gammaG1,gammaE1 = gammaE1,G = 0, E1 = 0, E2 = 0) * ComputeEgivenG(gamma01,gammaG2,G = 0, E = 0) * (qG^2)
P001 <- ComputeYgivenGE(beta0,betaG, betaE1, betaE2, G = 0, E1 = 0, E2 = 1) * ComputeE2givenGE1(gamma02,gammaG1,gammaE1 = gammaE1,G = 0, E1 = 0, E2 = 1) * ComputeEgivenG(gamma01,gammaG2,G = 0, E = 0) * (qG^2)
P010 <- ComputeYgivenGE(beta0,betaG, betaE1, betaE2, G = 0, E1 = 1, E2 = 0) * ComputeE2givenGE1(gamma02,gammaG1,gammaE1 = gammaE1,G = 0, E1 = 1, E2 = 0) * ComputeEgivenG(gamma01,gammaG2,G = 0, E = 1) * (qG^2)
P011 <- ComputeYgivenGE(beta0,betaG, betaE1, betaE2, G = 0, E1 = 1, E2 = 1) * ComputeE2givenGE1(gamma02,gammaG1,gammaE1 = gammaE1,G = 0, E1 = 1, E2 = 1) * ComputeEgivenG(gamma01,gammaG2,G = 0, E = 1) * (qG^2)
P100 <- ComputeYgivenGE(beta0,betaG, betaE1, betaE2, G = 1, E1 = 0, E2 = 0) * ComputeE2givenGE1(gamma02,gammaG1,gammaE1 = gammaE1,G = 1, E1 = 0, E2 = 0) * ComputeEgivenG(gamma01,gammaG2,G = 1, E = 0) * (2*qG*pG)
P101 <- ComputeYgivenGE(beta0,betaG, betaE1, betaE2, G = 1, E1 = 0, E2 = 1) * ComputeE2givenGE1(gamma02,gammaG1,gammaE1 = gammaE1,G = 1, E1 = 0, E2 = 1) * ComputeEgivenG(gamma01,gammaG2,G = 1, E = 0) * (2*qG*pG)
P110 <- ComputeYgivenGE(beta0,betaG, betaE1, betaE2, G = 1, E1 = 1, E2 = 0) * ComputeE2givenGE1(gamma02,gammaG1,gammaE1 = gammaE1,G = 1, E1 = 1, E2 = 0) * ComputeEgivenG(gamma01,gammaG2,G = 1, E = 1) * (2*qG*pG)
P111 <- ComputeYgivenGE(beta0,betaG, betaE1, betaE2, G = 1, E1 = 1, E2 = 1) * ComputeE2givenGE1(gamma02,gammaG1,gammaE1 = gammaE1,G = 1, E1 = 1, E2 = 1) * ComputeEgivenG(gamma01,gammaG2,G = 1, E = 1) * (2*qG*pG)
P200 <- ComputeYgivenGE(beta0,betaG, betaE1, betaE2, G = 2, E1 = 0, E2 = 0) * ComputeE2givenGE1(gamma02,gammaG1,gammaE1 = gammaE1,G = 2, E1 = 0, E2 = 0) * ComputeEgivenG(gamma01,gammaG2,G = 2, E = 0) * (pG^2)
P201 <- ComputeYgivenGE(beta0,betaG, betaE1, betaE2, G = 2, E1 = 0, E2 = 1) * ComputeE2givenGE1(gamma02,gammaG1,gammaE1 = gammaE1,G = 2, E1 = 0, E2 = 1) * ComputeEgivenG(gamma01,gammaG2,G = 2, E = 0) * (pG^2)
P210 <- ComputeYgivenGE(beta0,betaG, betaE1, betaE2, G = 2, E1 = 1, E2 = 0) * ComputeE2givenGE1(gamma02,gammaG1,gammaE1 = gammaE1,G = 2, E1 = 1, E2 = 0) * ComputeEgivenG(gamma01,gammaG2,G = 2, E = 1) * (pG^2)
P211 <- ComputeYgivenGE(beta0,betaG, betaE1, betaE2, G = 2, E1 = 1, E2 = 1) * ComputeE2givenGE1(gamma02,gammaG1,gammaE1 = gammaE1,G = 2, E1 = 1, E2 = 1) * ComputeEgivenG(gamma01,gammaG2,G = 2, E = 1) * (pG^2)
P <- P000 + P001 + P010 + P011 + P100 + P101 + P110 + P111 + P200 + P201 + P210 + P211
P - preva
}
stats::uniroot(ComputeP, c(-searchSizeBeta0, searchSizeBeta0))$root
}
gamma01 <- solveForgamma0(pE1,gammaG1, pG)
gamma02 <- solveForgamma02(pE = pE2,gammaG = gammaG2, pG = pG, gammaE1 = gammaE1, gamma01 = gamma01)
beta0 <- solveForbeta0_add(preva, betaG, betaE1, betaE2, pG, pE1, pE2, gammaG1, gammaG2, gammaE1)
I <- matrix(data = 0, nrow = 4, ncol = 4)
### Simulate for SE: by averaging B times
set.seed(seed)
for (i in 1:B) {
G <- sample(c(0,1,2), size = 1, replace = TRUE, prob = c(qG^2,2*pG*qG, pG^2))
E1 <- gamma01 + gammaG1*G + stats::rlogis(1)
E2 <- gamma02 + gammaG2*G + gammaE1 * E1 + stats::rlogis(1)
E1 <- ifelse(E1 >= 0, 1, 0)
E2 <- ifelse(E2 >= 0, 1, 0)
X <- matrix(c(1,G,E1,E2), ncol = 1)
eta <- beta0 + betaG*G + betaE1*E1 + betaE2*E2
weight <- stats::dlogis(eta)
I <- I + weight* X %*% t(X)
}
I <- I/B
if(LargePowerApproxi){
SE <- sqrt((solve(I)[2,2]))/sqrt(n)
return(stats::pnorm(-stats::qnorm(1-(alpha/2)) + betaG/SE))
}
else{
compute_power <- function(n){
### Once know this (expected) single I, scale by dividing sqrt(n): n is sample size
SE = sqrt((solve(I)[2,2]))/sqrt(n)
### Once know this SE of betaG hat, compute its power at this given sample size n:
Power = stats::pnorm(-stats::qnorm(1-(alpha/2)) + betaG/SE ) + stats::pnorm(-stats::qnorm(1-(alpha/2)) - betaG/SE)
Power
}
compute_power(n)
}
}
else if(mode == "dominant"){
pG <- 2*parameters$pG*(1-parameters$pG) + parameters$pG^2
qG <- 1 - pG
solveForgamma0 <- function(pE,gammaG, pG){
qG <- 1 - pG
ComputePE <- function(gamma0){
PE <- ComputeEgivenG(gamma0,gammaG,G = 0) * (qG) + ComputeEgivenG(gamma0,gammaG,G = 1) * (pG)
PE - pE
}
stats::uniroot(ComputePE, c(-searchSizeGamma0, searchSizeGamma0))$root
}
solveForgamma02 <- function(pE,gammaG, gammaE1, pG, gamma01){
qG <- 1 - pG
xvec1 = c(qG, pG)
xvec2 = c(ComputeEgivenG(gamma0 = gamma01,gammaG = gammaG,G = 0, E = 1), ComputeEgivenG(gamma0 = gamma01,gammaG = gammaG,G = 1, E = 1))
ComputePE <- function(gamma0){
xvec30 = c(ComputeE2givenGE1(gamma0 = gamma0, gammaG = gammaG, G = 0, E2 = 1, E1 = 0, gammaE1 = gammaE1), ComputeE2givenGE1(gamma0 = gamma0, gammaG = gammaG, G = 1, E2 = 1, E1 = 0, gammaE1 = gammaE1))
xvec31 = c(ComputeE2givenGE1(gamma0 = gamma0, gammaG = gammaG, G = 0, E2 = 1, E1 = 1, gammaE1 = gammaE1), ComputeE2givenGE1(gamma0 = gamma0, gammaG = gammaG, G = 1, E2 = 1, E1 = 1, gammaE1 = gammaE1))
PE <- sum(xvec1 * xvec2 * xvec31) + sum(xvec1 * (1-xvec2) * xvec30)
PE - pE
}
stats::uniroot(ComputePE, c(-searchSizeGamma0, searchSizeGamma0))$root
}
solveForbeta0_dom <- function(preva, betaG, betaE1, betaE2, pG, pE1, pE2, gammaG1, gammaG2, gammaE1){
qG <- 1 - pG
gamma01 <- solveForgamma0(pE1,gammaG1, pG)
gamma02 <- solveForgamma02(pE2,gammaG2, gammaE1, pG, gamma01)
ComputeP <- function(beta0){
P000 <- ComputeYgivenGE(beta0,betaG, betaE1, betaE2, G = 0, E1 = 0, E2 = 0) * ComputeE2givenGE1(gamma02,gammaG1,gammaE1 = gammaE1,G = 0, E1 = 0, E2 = 0) * ComputeEgivenG(gamma01,gammaG2,G = 0, E = 0) * (qG^2)
P001 <- ComputeYgivenGE(beta0,betaG, betaE1, betaE2, G = 0, E1 = 0, E2 = 1) * ComputeE2givenGE1(gamma02,gammaG1,gammaE1 = gammaE1,G = 0, E1 = 0, E2 = 1) * ComputeEgivenG(gamma01,gammaG2,G = 0, E = 0) * (qG^2)
P010 <- ComputeYgivenGE(beta0,betaG, betaE1, betaE2, G = 0, E1 = 1, E2 = 0) * ComputeE2givenGE1(gamma02,gammaG1,gammaE1 = gammaE1,G = 0, E1 = 1, E2 = 0) * ComputeEgivenG(gamma01,gammaG2,G = 0, E = 1) * (qG^2)
P011 <- ComputeYgivenGE(beta0,betaG, betaE1, betaE2, G = 0, E1 = 1, E2 = 1) * ComputeE2givenGE1(gamma02,gammaG1,gammaE1 = gammaE1,G = 0, E1 = 1, E2 = 1) * ComputeEgivenG(gamma01,gammaG2,G = 0, E = 1) * (qG^2)
P100 <- ComputeYgivenGE(beta0,betaG, betaE1, betaE2, G = 1, E1 = 0, E2 = 0) * ComputeE2givenGE1(gamma02,gammaG1,gammaE1 = gammaE1,G = 1, E1 = 0, E2 = 0) * ComputeEgivenG(gamma01,gammaG2,G = 1, E = 0) * (2*qG*pG)
P101 <- ComputeYgivenGE(beta0,betaG, betaE1, betaE2, G = 1, E1 = 0, E2 = 1) * ComputeE2givenGE1(gamma02,gammaG1,gammaE1 = gammaE1,G = 1, E1 = 0, E2 = 1) * ComputeEgivenG(gamma01,gammaG2,G = 1, E = 0) * (2*qG*pG)
P110 <- ComputeYgivenGE(beta0,betaG, betaE1, betaE2, G = 1, E1 = 1, E2 = 0) * ComputeE2givenGE1(gamma02,gammaG1,gammaE1 = gammaE1,G = 1, E1 = 1, E2 = 0) * ComputeEgivenG(gamma01,gammaG2,G = 1, E = 1) * (2*qG*pG)
P111 <- ComputeYgivenGE(beta0,betaG, betaE1, betaE2, G = 1, E1 = 1, E2 = 1) * ComputeE2givenGE1(gamma02,gammaG1,gammaE1 = gammaE1,G = 1, E1 = 1, E2 = 1) * ComputeEgivenG(gamma01,gammaG2,G = 1, E = 1) * (2*qG*pG)
P <- P000 + P001 + P010 + P011 + P100 + P101 + P110 + P111
P - preva
}
stats::uniroot(ComputeP, c(-searchSizeBeta0, searchSizeBeta0))$root
}
gamma01 <- solveForgamma0(pE1,gammaG1, pG)
gamma02 <- solveForgamma02(pE = pE2,gammaG = gammaG2, pG = pG, gammaE1 = gammaE1, gamma01 = gamma01)
beta0 <- solveForbeta0_dom(preva, betaG, betaE1, betaE2, pG, pE1, pE2, gammaG1, gammaG2, gammaE1)
I <- matrix(data = 0, nrow = 4, ncol = 4)
### Simulate for SE: by averaging B times
set.seed(seed)
for (i in 1:B) {
G <- sample(c(0,1), size = 1, replace = TRUE, prob = c(qG,pG))
E1 <- gamma01 + gammaG1*G + stats::rlogis(1)
E2 <- gamma02 + gammaG2*G + gammaE1 * E1 + stats::rlogis(1)
E1 <- ifelse(E1 >= 0, 1, 0)
E2 <- ifelse(E2 >= 0, 1, 0)
X <- matrix(c(1,G,E1,E2), ncol = 1)
eta <- beta0 + betaG*G + betaE1*E1 + betaE2*E2
weight <- stats::dlogis(eta)
I <- I + weight* X %*% t(X)
}
I <- I/B
if(LargePowerApproxi){
SE <- sqrt((solve(I)[2,2]))/sqrt(n)
return(stats::pnorm(-stats::qnorm(1-(alpha/2)) + betaG/SE))
}
else{
compute_power <- function(n){
### Once know this (expected) single I, scale by dividing sqrt(n): n is sample size
SE = sqrt((solve(I)[2,2]))/sqrt(n)
### Once know this SE of betaG hat, compute its power at this given sample size n:
Power = stats::pnorm(-stats::qnorm(1-(alpha/2)) + betaG/SE ) + stats::pnorm(-stats::qnorm(1-(alpha/2)) - betaG/SE)
Power
}
compute_power(n)
}
}
else if(mode == "recessive") {
pG <- (parameters$pG)^2
qG <- (1 - pG)
solveForgamma0 <- function(pE,gammaG, pG){
qG <- 1 - pG
ComputePE <- function(gamma0){
PE <- ComputeEgivenG(gamma0,gammaG,G = 0) * (qG) + ComputeEgivenG(gamma0,gammaG,G = 1) * (pG)
PE - pE
}
stats::uniroot(ComputePE, c(-searchSizeGamma0, searchSizeGamma0))$root
}
solveForgamma02 <- function(pE,gammaG, gammaE1, pG, gamma01){
qG <- 1 - pG
xvec1 = c(qG, pG)
xvec2 = c(ComputeEgivenG(gamma0 = gamma01,gammaG = gammaG,G = 0, E = 1), ComputeEgivenG(gamma0 = gamma01,gammaG = gammaG,G = 1, E = 1))
ComputePE <- function(gamma0){
xvec30 = c(ComputeE2givenGE1(gamma0 = gamma0, gammaG = gammaG, G = 0, E2 = 1, E1 = 0, gammaE1 = gammaE1), ComputeE2givenGE1(gamma0 = gamma0, gammaG = gammaG, G = 1, E2 = 1, E1 = 0, gammaE1 = gammaE1))
xvec31 = c(ComputeE2givenGE1(gamma0 = gamma0, gammaG = gammaG, G = 0, E2 = 1, E1 = 1, gammaE1 = gammaE1), ComputeE2givenGE1(gamma0 = gamma0, gammaG = gammaG, G = 1, E2 = 1, E1 = 1, gammaE1 = gammaE1))
PE <- sum(xvec1 * xvec2 * xvec31) + sum(xvec1 * (1-xvec2) * xvec30)
PE - pE
}
stats::uniroot(ComputePE, c(-searchSizeGamma0, searchSizeGamma0))$root
}
solveForbeta0_rec <- function(preva, betaG, betaE1, betaE2, pG, pE1, pE2, gammaG1, gammaG2, gammaE1){
qG <- 1 - pG
gamma01 <- solveForgamma0(pE1,gammaG1, pG)
gamma02 <- solveForgamma02(pE2,gammaG2, gammaE1, pG, gamma01)
ComputeP <- function(beta0){
P000 <- ComputeYgivenGE(beta0,betaG, betaE1, betaE2, G = 0, E1 = 0, E2 = 0) * ComputeE2givenGE1(gamma02,gammaG1,gammaE1 = gammaE1,G = 0, E1 = 0, E2 = 0) * ComputeEgivenG(gamma01,gammaG2,G = 0, E = 0) * (qG^2)
P001 <- ComputeYgivenGE(beta0,betaG, betaE1, betaE2, G = 0, E1 = 0, E2 = 1) * ComputeE2givenGE1(gamma02,gammaG1,gammaE1 = gammaE1,G = 0, E1 = 0, E2 = 1) * ComputeEgivenG(gamma01,gammaG2,G = 0, E = 0) * (qG^2)
P010 <- ComputeYgivenGE(beta0,betaG, betaE1, betaE2, G = 0, E1 = 1, E2 = 0) * ComputeE2givenGE1(gamma02,gammaG1,gammaE1 = gammaE1,G = 0, E1 = 1, E2 = 0) * ComputeEgivenG(gamma01,gammaG2,G = 0, E = 1) * (qG^2)
P011 <- ComputeYgivenGE(beta0,betaG, betaE1, betaE2, G = 0, E1 = 1, E2 = 1) * ComputeE2givenGE1(gamma02,gammaG1,gammaE1 = gammaE1,G = 0, E1 = 1, E2 = 1) * ComputeEgivenG(gamma01,gammaG2,G = 0, E = 1) * (qG^2)
P100 <- ComputeYgivenGE(beta0,betaG, betaE1, betaE2, G = 1, E1 = 0, E2 = 0) * ComputeE2givenGE1(gamma02,gammaG1,gammaE1 = gammaE1,G = 1, E1 = 0, E2 = 0) * ComputeEgivenG(gamma01,gammaG2,G = 1, E = 0) * (2*qG*pG)
P101 <- ComputeYgivenGE(beta0,betaG, betaE1, betaE2, G = 1, E1 = 0, E2 = 1) * ComputeE2givenGE1(gamma02,gammaG1,gammaE1 = gammaE1,G = 1, E1 = 0, E2 = 1) * ComputeEgivenG(gamma01,gammaG2,G = 1, E = 0) * (2*qG*pG)
P110 <- ComputeYgivenGE(beta0,betaG, betaE1, betaE2, G = 1, E1 = 1, E2 = 0) * ComputeE2givenGE1(gamma02,gammaG1,gammaE1 = gammaE1,G = 1, E1 = 1, E2 = 0) * ComputeEgivenG(gamma01,gammaG2,G = 1, E = 1) * (2*qG*pG)
P111 <- ComputeYgivenGE(beta0,betaG, betaE1, betaE2, G = 1, E1 = 1, E2 = 1) * ComputeE2givenGE1(gamma02,gammaG1,gammaE1 = gammaE1,G = 1, E1 = 1, E2 = 1) * ComputeEgivenG(gamma01,gammaG2,G = 1, E = 1) * (2*qG*pG)
P <- P000 + P001 + P010 + P011 + P100 + P101 + P110 + P111
P - preva
}
stats::uniroot(ComputeP, c(-searchSizeBeta0, searchSizeBeta0))$root
}
gamma01 <- solveForgamma0(pE1,gammaG1, pG)
gamma02 <- solveForgamma02(pE = pE2,gammaG = gammaG2, pG = pG, gammaE1 = gammaE1, gamma01 = gamma01)
beta0 <- solveForbeta0_rec(preva, betaG, betaE1, betaE2, pG, pE1, pE2, gammaG1, gammaG2, gammaE1)
I <- matrix(data = 0, nrow = 4, ncol = 4)
### Simulate for SE: by averaging B times
set.seed(seed)
for (i in 1:B) {
G <- sample(c(0,1), size = 1, replace = TRUE, prob = c(qG,pG))
E1 <- gamma01 + gammaG1*G + stats::rlogis(1)
E2 <- gamma02 + gammaG2*G + gammaE1 * E1 + stats::rlogis(1)
E1 <- ifelse(E1 >= 0, 1, 0)
E2 <- ifelse(E2 >= 0, 1, 0)
X <- matrix(c(1,G,E1,E2), ncol = 1)
eta <- beta0 + betaG*G + betaE1*E1 + betaE2*E2
weight <- stats::dlogis(eta)
I <- I + weight* X %*% t(X)
}
I <- I/B
if(LargePowerApproxi){
SE <- sqrt((solve(I)[2,2]))/sqrt(n)
return(stats::pnorm(-stats::qnorm(1-(alpha/2)) + betaG/SE))
}
else{
compute_power <- function(n){
### Once know this (expected) single I, scale by dividing sqrt(n): n is sample size
SE = sqrt((solve(I)[2,2]))/sqrt(n)
### Once know this SE of betaG hat, compute its power at this given sample size n:
Power = stats::pnorm(-stats::qnorm(1-(alpha/2)) + betaG/SE ) + stats::pnorm(-stats::qnorm(1-(alpha/2)) - betaG/SE)
Power
}
compute_power(n)
}
}
}
#' Compute the required power for binary response, a SNP G and two binary covariates that are conditionally dependent given G, using the empirical method.
#'
#' @param n An integer number that indicates the sample size.
#' @param B An integer number that indicates the number of simulated sample, by default is 10000.
#' @param parameters Refer to SPCompute::Compute_Power_Sim; Except betaE, muE, sigmaE and gammaG have to be vectors of length 2. If exists, the binary covariate is assumed to be the first covariate. The parameter gammaE is a single parameter specifying the conditional dependency between E1 and E2 given G (i.e. coefficient of E1 when regressing E2 on E1 and G).
#' @param mode A string of either "additive", "dominant" or "recessive", indicating the genetic mode, by default is "additive".
#' @param alpha A numeric value that denotes the significance level used in the study, by default is 0.05.
#' @param searchSizeBeta0 The interval radius for the numerical search of beta0, by default is 8. Setting to higher values may solve some numerical problems at the cost of longer runtime.
#' @param searchSizeGamma0 The interval radius for the numerical search of gamma0, by default is 8. Setting to higher values may solve some numerical problems at the cost of longer runtime.
#' @param seed An integer number that indicates the seed used for the simulation, by default is 123.
#' @return The power that can be achieved at the given sample size (computed from empirical power).
#' @noRd
Compute_Power_Emp_BBB_dep <- function(n, B = 10000, parameters, mode = "additive", alpha = 0.05, seed = 123, searchSizeBeta0 = 8, searchSizeGamma0 = 8){
correct <- c()
ComputeEgivenG <- function(gamma0,gammaG,G, E = 1){
PEG <- (exp(gamma0 + gammaG * G)^E)/(1+exp(gamma0 + gammaG * G))
PEG
}
ComputeE2givenGE1 <- function(gamma0,gammaG, gammaE1,G, E1, E2 = 1){
PEG <- (exp(gamma0 + gammaG * G + gammaE1 * E1)^E2)/(1+exp(gamma0 + gammaG * G + gammaE1 * E1))
PEG
}
ComputeYgivenGE <- function(beta0,betaG, betaE1, betaE2, G, E1, E2, Y = 1){
PYGE <- (exp(beta0 + betaG * G + betaE1 * E1 + betaE2 * E2)^Y)/(1 + exp(beta0 + betaG * G + betaE1 * E1 + betaE2 * E2))
PYGE
}
preva <- parameters$preva
gammaG1 <- parameters$gammaG[1]
pE1 <- parameters$pE[1]
betaE1 <- parameters$betaE[1]
gammaG2 <- parameters$gammaG[2]
pE2 <- parameters$pE[2]
betaE2 <- parameters$betaE[2]
betaG <- parameters$betaG
gammaE1 <- parameters$gammaE
if(mode == "additive"){
pG <- parameters$pG
qG <- 1 - pG
solveForgamma0 <- function(pE,gammaG, pG){
qG <- 1 - pG
ComputePE <- function(gamma0){
PE <- ComputeEgivenG(gamma0,gammaG,G = 0) * (qG^2) + ComputeEgivenG(gamma0,gammaG,G = 2) * (pG^2) +
ComputeEgivenG(gamma0,gammaG,G = 1) * (2*qG*pG)
PE - pE
}
stats::uniroot(ComputePE, c(-searchSizeGamma0, searchSizeGamma0))$root
}
solveForgamma02 <- function(pE,gammaG, gammaE1, pG, gamma01){
qG <- 1 - pG
xvec1 = c(qG^2, (2 * qG * pG), pG^2)
xvec2 = c(ComputeEgivenG(gamma0 = gamma01,gammaG = gammaG,G = 0, E = 1), ComputeEgivenG(gamma0 = gamma01,gammaG = gammaG,G = 1, E = 1), ComputeEgivenG(gamma0 = gamma01,gammaG = gammaG,G = 2, E = 1))
ComputePE <- function(gamma0){
xvec30 = c(ComputeE2givenGE1(gamma0 = gamma0, gammaG = gammaG, G = 0, E2 = 1, E1 = 0, gammaE1 = gammaE1), ComputeE2givenGE1(gamma0 = gamma0, gammaG = gammaG, G = 1, E2 = 1, E1 = 0, gammaE1 = gammaE1), ComputeE2givenGE1(gamma0 = gamma0, gammaG = gammaG, G = 2, E2 = 1, E1 = 0, gammaE1 = gammaE1))
xvec31 = c(ComputeE2givenGE1(gamma0 = gamma0, gammaG = gammaG, G = 0, E2 = 1, E1 = 1, gammaE1 = gammaE1), ComputeE2givenGE1(gamma0 = gamma0, gammaG = gammaG, G = 1, E2 = 1, E1 = 1, gammaE1 = gammaE1), ComputeE2givenGE1(gamma0 = gamma0, gammaG = gammaG, G = 2, E2 = 1, E1 = 1, gammaE1 = gammaE1))
PE <- sum(xvec1 * xvec2 * xvec31) + sum(xvec1 * (1-xvec2) * xvec30)
PE - pE
}
stats::uniroot(ComputePE, c(-searchSizeGamma0, searchSizeGamma0))$root
}
solveForbeta0_add <- function(preva, betaG, betaE1, betaE2, pG, pE1, pE2, gammaG1, gammaG2, gammaE1){
qG <- 1 - pG
gamma01 <- solveForgamma0(pE1,gammaG1, pG)
gamma02 <- solveForgamma02(pE2,gammaG2, gammaE1, pG, gamma01)
ComputeP <- function(beta0){
P000 <- ComputeYgivenGE(beta0,betaG, betaE1, betaE2, G = 0, E1 = 0, E2 = 0) * ComputeE2givenGE1(gamma02,gammaG1,gammaE1 = gammaE1,G = 0, E1 = 0, E2 = 0) * ComputeEgivenG(gamma01,gammaG2,G = 0, E = 0) * (qG^2)
P001 <- ComputeYgivenGE(beta0,betaG, betaE1, betaE2, G = 0, E1 = 0, E2 = 1) * ComputeE2givenGE1(gamma02,gammaG1,gammaE1 = gammaE1,G = 0, E1 = 0, E2 = 1) * ComputeEgivenG(gamma01,gammaG2,G = 0, E = 0) * (qG^2)
P010 <- ComputeYgivenGE(beta0,betaG, betaE1, betaE2, G = 0, E1 = 1, E2 = 0) * ComputeE2givenGE1(gamma02,gammaG1,gammaE1 = gammaE1,G = 0, E1 = 1, E2 = 0) * ComputeEgivenG(gamma01,gammaG2,G = 0, E = 1) * (qG^2)
P011 <- ComputeYgivenGE(beta0,betaG, betaE1, betaE2, G = 0, E1 = 1, E2 = 1) * ComputeE2givenGE1(gamma02,gammaG1,gammaE1 = gammaE1,G = 0, E1 = 1, E2 = 1) * ComputeEgivenG(gamma01,gammaG2,G = 0, E = 1) * (qG^2)
P100 <- ComputeYgivenGE(beta0,betaG, betaE1, betaE2, G = 1, E1 = 0, E2 = 0) * ComputeE2givenGE1(gamma02,gammaG1,gammaE1 = gammaE1,G = 1, E1 = 0, E2 = 0) * ComputeEgivenG(gamma01,gammaG2,G = 1, E = 0) * (2*qG*pG)
P101 <- ComputeYgivenGE(beta0,betaG, betaE1, betaE2, G = 1, E1 = 0, E2 = 1) * ComputeE2givenGE1(gamma02,gammaG1,gammaE1 = gammaE1,G = 1, E1 = 0, E2 = 1) * ComputeEgivenG(gamma01,gammaG2,G = 1, E = 0) * (2*qG*pG)
P110 <- ComputeYgivenGE(beta0,betaG, betaE1, betaE2, G = 1, E1 = 1, E2 = 0) * ComputeE2givenGE1(gamma02,gammaG1,gammaE1 = gammaE1,G = 1, E1 = 1, E2 = 0) * ComputeEgivenG(gamma01,gammaG2,G = 1, E = 1) * (2*qG*pG)
P111 <- ComputeYgivenGE(beta0,betaG, betaE1, betaE2, G = 1, E1 = 1, E2 = 1) * ComputeE2givenGE1(gamma02,gammaG1,gammaE1 = gammaE1,G = 1, E1 = 1, E2 = 1) * ComputeEgivenG(gamma01,gammaG2,G = 1, E = 1) * (2*qG*pG)
P200 <- ComputeYgivenGE(beta0,betaG, betaE1, betaE2, G = 2, E1 = 0, E2 = 0) * ComputeE2givenGE1(gamma02,gammaG1,gammaE1 = gammaE1,G = 2, E1 = 0, E2 = 0) * ComputeEgivenG(gamma01,gammaG2,G = 2, E = 0) * (pG^2)
P201 <- ComputeYgivenGE(beta0,betaG, betaE1, betaE2, G = 2, E1 = 0, E2 = 1) * ComputeE2givenGE1(gamma02,gammaG1,gammaE1 = gammaE1,G = 2, E1 = 0, E2 = 1) * ComputeEgivenG(gamma01,gammaG2,G = 2, E = 0) * (pG^2)
P210 <- ComputeYgivenGE(beta0,betaG, betaE1, betaE2, G = 2, E1 = 1, E2 = 0) * ComputeE2givenGE1(gamma02,gammaG1,gammaE1 = gammaE1,G = 2, E1 = 1, E2 = 0) * ComputeEgivenG(gamma01,gammaG2,G = 2, E = 1) * (pG^2)
P211 <- ComputeYgivenGE(beta0,betaG, betaE1, betaE2, G = 2, E1 = 1, E2 = 1) * ComputeE2givenGE1(gamma02,gammaG1,gammaE1 = gammaE1,G = 2, E1 = 1, E2 = 1) * ComputeEgivenG(gamma01,gammaG2,G = 2, E = 1) * (pG^2)
P <- P000 + P001 + P010 + P011 + P100 + P101 + P110 + P111 + P200 + P201 + P210 + P211
P - preva
}
stats::uniroot(ComputeP, c(-searchSizeBeta0, searchSizeBeta0))$root
}
gamma01 <- solveForgamma0(pE1,gammaG1, pG)
gamma02 <- solveForgamma02(pE = pE2,gammaG = gammaG2, pG = pG, gammaE1 = gammaE1, gamma01 = gamma01)
beta0 <- solveForbeta0_add(preva, betaG, betaE1, betaE2, pG, pE1, pE2, gammaG1, gammaG2, gammaE1)
set.seed(seed)
for (i in 1:B) {
G <- sample(c(0,1,2), size = n, replace = TRUE, prob = c(qG^2,2*pG*qG, pG^2))
E1 <- gamma01 + gammaG1*G + stats::rlogis(n)
E1 <- ifelse(E1 >= 0, 1, 0)
E2 <- gamma02 + gammaG2*G + gammaE1 * E1 + stats::rlogis(n)
E2 <- ifelse(E2 >= 0, 1, 0)
y <- beta0 + betaG * G + betaE1 * E1 + betaE2 * E2 + stats::rlogis(n)
y <- ifelse(y > 0, 1, 0)
correct[i] <- summary(stats::glm(y~ G + E1 + E2, family = stats::binomial("logit")))$coefficients[2,4] <= alpha
}
Power <- sum(correct)/B
}
else if(mode == "dominant"){
pG <- 2*parameters$pG*(1-parameters$pG) + parameters$pG^2
qG <- 1 - pG
pG <- 2*parameters$pG*(1-parameters$pG) + parameters$pG^2
qG <- 1 - pG
solveForgamma0 <- function(pE,gammaG, pG){
qG <- 1 - pG
ComputePE <- function(gamma0){
PE <- ComputeEgivenG(gamma0,gammaG,G = 0) * (qG) + ComputeEgivenG(gamma0,gammaG,G = 1) * (pG)
PE - pE
}
stats::uniroot(ComputePE, c(-searchSizeGamma0, searchSizeGamma0))$root
}
solveForgamma02 <- function(pE,gammaG, gammaE1, pG, gamma01){
qG <- 1 - pG
xvec1 = c(qG, pG)
xvec2 = c(ComputeEgivenG(gamma0 = gamma01,gammaG = gammaG,G = 0, E = 1), ComputeEgivenG(gamma0 = gamma01,gammaG = gammaG,G = 1, E = 1))
ComputePE <- function(gamma0){
xvec30 = c(ComputeE2givenGE1(gamma0 = gamma0, gammaG = gammaG, G = 0, E2 = 1, E1 = 0, gammaE1 = gammaE1), ComputeE2givenGE1(gamma0 = gamma0, gammaG = gammaG, G = 1, E2 = 1, E1 = 0, gammaE1 = gammaE1))
xvec31 = c(ComputeE2givenGE1(gamma0 = gamma0, gammaG = gammaG, G = 0, E2 = 1, E1 = 1, gammaE1 = gammaE1), ComputeE2givenGE1(gamma0 = gamma0, gammaG = gammaG, G = 1, E2 = 1, E1 = 1, gammaE1 = gammaE1))
PE <- sum(xvec1 * xvec2 * xvec31) + sum(xvec1 * (1-xvec2) * xvec30)
PE - pE
}
stats::uniroot(ComputePE, c(-searchSizeGamma0, searchSizeGamma0))$root
}
solveForbeta0_dom <- function(preva, betaG, betaE1, betaE2, pG, pE1, pE2, gammaG1, gammaG2, gammaE1){
qG <- 1 - pG
gamma01 <- solveForgamma0(pE1,gammaG1, pG)
gamma02 <- solveForgamma02(pE2,gammaG2, gammaE1, pG, gamma01)
ComputeP <- function(beta0){
P000 <- ComputeYgivenGE(beta0,betaG, betaE1, betaE2, G = 0, E1 = 0, E2 = 0) * ComputeE2givenGE1(gamma02,gammaG1,gammaE1 = gammaE1,G = 0, E1 = 0, E2 = 0) * ComputeEgivenG(gamma01,gammaG2,G = 0, E = 0) * (qG^2)
P001 <- ComputeYgivenGE(beta0,betaG, betaE1, betaE2, G = 0, E1 = 0, E2 = 1) * ComputeE2givenGE1(gamma02,gammaG1,gammaE1 = gammaE1,G = 0, E1 = 0, E2 = 1) * ComputeEgivenG(gamma01,gammaG2,G = 0, E = 0) * (qG^2)
P010 <- ComputeYgivenGE(beta0,betaG, betaE1, betaE2, G = 0, E1 = 1, E2 = 0) * ComputeE2givenGE1(gamma02,gammaG1,gammaE1 = gammaE1,G = 0, E1 = 1, E2 = 0) * ComputeEgivenG(gamma01,gammaG2,G = 0, E = 1) * (qG^2)
P011 <- ComputeYgivenGE(beta0,betaG, betaE1, betaE2, G = 0, E1 = 1, E2 = 1) * ComputeE2givenGE1(gamma02,gammaG1,gammaE1 = gammaE1,G = 0, E1 = 1, E2 = 1) * ComputeEgivenG(gamma01,gammaG2,G = 0, E = 1) * (qG^2)
P100 <- ComputeYgivenGE(beta0,betaG, betaE1, betaE2, G = 1, E1 = 0, E2 = 0) * ComputeE2givenGE1(gamma02,gammaG1,gammaE1 = gammaE1,G = 1, E1 = 0, E2 = 0) * ComputeEgivenG(gamma01,gammaG2,G = 1, E = 0) * (2*qG*pG)
P101 <- ComputeYgivenGE(beta0,betaG, betaE1, betaE2, G = 1, E1 = 0, E2 = 1) * ComputeE2givenGE1(gamma02,gammaG1,gammaE1 = gammaE1,G = 1, E1 = 0, E2 = 1) * ComputeEgivenG(gamma01,gammaG2,G = 1, E = 0) * (2*qG*pG)
P110 <- ComputeYgivenGE(beta0,betaG, betaE1, betaE2, G = 1, E1 = 1, E2 = 0) * ComputeE2givenGE1(gamma02,gammaG1,gammaE1 = gammaE1,G = 1, E1 = 1, E2 = 0) * ComputeEgivenG(gamma01,gammaG2,G = 1, E = 1) * (2*qG*pG)
P111 <- ComputeYgivenGE(beta0,betaG, betaE1, betaE2, G = 1, E1 = 1, E2 = 1) * ComputeE2givenGE1(gamma02,gammaG1,gammaE1 = gammaE1,G = 1, E1 = 1, E2 = 1) * ComputeEgivenG(gamma01,gammaG2,G = 1, E = 1) * (2*qG*pG)
P <- P000 + P001 + P010 + P011 + P100 + P101 + P110 + P111
P - preva
}
stats::uniroot(ComputeP, c(-searchSizeBeta0, searchSizeBeta0))$root
}
gamma01 <- solveForgamma0(pE1,gammaG1, pG)
gamma02 <- solveForgamma02(pE = pE2,gammaG = gammaG2, pG = pG, gammaE1 = gammaE1, gamma01 = gamma01)
beta0 <- solveForbeta0_dom(preva, betaG, betaE1, betaE2, pG, pE1, pE2, gammaG1, gammaG2, gammaE1)
set.seed(seed)
for (i in 1:B) {
G <- sample(c(0,1), size = n, replace = TRUE, prob = c(qG,pG))
E1 <- gamma01 + gammaG1*G + stats::rlogis(n)
E1 <- ifelse(E1 >= 0, 1, 0)
E2 <- gamma02 + gammaG2*G + gammaE1 * E1 + stats::rlogis(n)
E2 <- ifelse(E2 >= 0, 1, 0)
y <- beta0 + betaG * G + betaE1 * E1 + betaE2 * E2 + stats::rlogis(n)
y <- ifelse(y > 0, 1, 0)
correct[i] <- summary(stats::glm(y~ G + E1 + E2, family = stats::binomial("logit")))$coefficients[2,4] <= alpha
}
Power <- sum(correct)/B
}
else if(mode == "recessive") {
pG <- (parameters$pG)^2
qG <- (1 - pG)
solveForgamma0 <- function(pE,gammaG, pG){
qG <- 1 - pG
ComputePE <- function(gamma0){
PE <- ComputeEgivenG(gamma0,gammaG,G = 0) * (qG) + ComputeEgivenG(gamma0,gammaG,G = 1) * (pG)
PE - pE
}
stats::uniroot(ComputePE, c(-searchSizeGamma0, searchSizeGamma0))$root
}
solveForgamma02 <- function(pE,gammaG, gammaE1, pG, gamma01){
qG <- 1 - pG
xvec1 = c(qG, pG)
xvec2 = c(ComputeEgivenG(gamma0 = gamma01,gammaG = gammaG,G = 0, E = 1), ComputeEgivenG(gamma0 = gamma01,gammaG = gammaG,G = 1, E = 1))
ComputePE <- function(gamma0){
xvec30 = c(ComputeE2givenGE1(gamma0 = gamma0, gammaG = gammaG, G = 0, E2 = 1, E1 = 0, gammaE1 = gammaE1), ComputeE2givenGE1(gamma0 = gamma0, gammaG = gammaG, G = 1, E2 = 1, E1 = 0, gammaE1 = gammaE1))
xvec31 = c(ComputeE2givenGE1(gamma0 = gamma0, gammaG = gammaG, G = 0, E2 = 1, E1 = 1, gammaE1 = gammaE1), ComputeE2givenGE1(gamma0 = gamma0, gammaG = gammaG, G = 1, E2 = 1, E1 = 1, gammaE1 = gammaE1))
PE <- sum(xvec1 * xvec2 * xvec31) + sum(xvec1 * (1-xvec2) * xvec30)
PE - pE
}
stats::uniroot(ComputePE, c(-searchSizeGamma0, searchSizeGamma0))$root
}
solveForbeta0_rec <- function(preva, betaG, betaE1, betaE2, pG, pE1, pE2, gammaG1, gammaG2, gammaE1){
qG <- 1 - pG
gamma01 <- solveForgamma0(pE1,gammaG1, pG)
gamma02 <- solveForgamma02(pE2,gammaG2, gammaE1, pG, gamma01)
ComputeP <- function(beta0){
P000 <- ComputeYgivenGE(beta0,betaG, betaE1, betaE2, G = 0, E1 = 0, E2 = 0) * ComputeE2givenGE1(gamma02,gammaG1,gammaE1 = gammaE1,G = 0, E1 = 0, E2 = 0) * ComputeEgivenG(gamma01,gammaG2,G = 0, E = 0) * (qG^2)
P001 <- ComputeYgivenGE(beta0,betaG, betaE1, betaE2, G = 0, E1 = 0, E2 = 1) * ComputeE2givenGE1(gamma02,gammaG1,gammaE1 = gammaE1,G = 0, E1 = 0, E2 = 1) * ComputeEgivenG(gamma01,gammaG2,G = 0, E = 0) * (qG^2)
P010 <- ComputeYgivenGE(beta0,betaG, betaE1, betaE2, G = 0, E1 = 1, E2 = 0) * ComputeE2givenGE1(gamma02,gammaG1,gammaE1 = gammaE1,G = 0, E1 = 1, E2 = 0) * ComputeEgivenG(gamma01,gammaG2,G = 0, E = 1) * (qG^2)
P011 <- ComputeYgivenGE(beta0,betaG, betaE1, betaE2, G = 0, E1 = 1, E2 = 1) * ComputeE2givenGE1(gamma02,gammaG1,gammaE1 = gammaE1,G = 0, E1 = 1, E2 = 1) * ComputeEgivenG(gamma01,gammaG2,G = 0, E = 1) * (qG^2)
P100 <- ComputeYgivenGE(beta0,betaG, betaE1, betaE2, G = 1, E1 = 0, E2 = 0) * ComputeE2givenGE1(gamma02,gammaG1,gammaE1 = gammaE1,G = 1, E1 = 0, E2 = 0) * ComputeEgivenG(gamma01,gammaG2,G = 1, E = 0) * (2*qG*pG)
P101 <- ComputeYgivenGE(beta0,betaG, betaE1, betaE2, G = 1, E1 = 0, E2 = 1) * ComputeE2givenGE1(gamma02,gammaG1,gammaE1 = gammaE1,G = 1, E1 = 0, E2 = 1) * ComputeEgivenG(gamma01,gammaG2,G = 1, E = 0) * (2*qG*pG)
P110 <- ComputeYgivenGE(beta0,betaG, betaE1, betaE2, G = 1, E1 = 1, E2 = 0) * ComputeE2givenGE1(gamma02,gammaG1,gammaE1 = gammaE1,G = 1, E1 = 1, E2 = 0) * ComputeEgivenG(gamma01,gammaG2,G = 1, E = 1) * (2*qG*pG)
P111 <- ComputeYgivenGE(beta0,betaG, betaE1, betaE2, G = 1, E1 = 1, E2 = 1) * ComputeE2givenGE1(gamma02,gammaG1,gammaE1 = gammaE1,G = 1, E1 = 1, E2 = 1) * ComputeEgivenG(gamma01,gammaG2,G = 1, E = 1) * (2*qG*pG)
P <- P000 + P001 + P010 + P011 + P100 + P101 + P110 + P111
P - preva
}
stats::uniroot(ComputeP, c(-searchSizeBeta0, searchSizeBeta0))$root
}
gamma01 <- solveForgamma0(pE1,gammaG1, pG)
gamma02 <- solveForgamma02(pE = pE2,gammaG = gammaG2, pG = pG, gammaE1 = gammaE1, gamma01 = gamma01)
beta0 <- solveForbeta0_rec(preva, betaG, betaE1, betaE2, pG, pE1, pE2, gammaG1, gammaG2, gammaE1)
set.seed(seed)
for (i in 1:B) {
G <- sample(c(0,1), size = n, replace = TRUE, prob = c(qG,pG))
E1 <- gamma01 + gammaG1*G + stats::rlogis(n)
E1 <- ifelse(E1 >= 0, 1, 0)
E2 <- gamma02 + gammaG2*G + gammaE1 * E1 + stats::rlogis(n)
E2 <- ifelse(E2 >= 0, 1, 0)
y <- beta0 + betaG * G + betaE1 * E1 + betaE2 * E2 + stats::rlogis(n)
y <- ifelse(y > 0, 1, 0)
correct[i] <- summary(stats::glm(y~ G + E1 + E2, family = stats::binomial("logit")))$coefficients[2,4] <= alpha
}
Power <- sum(correct)/B
}
Power
}
#' Compute the required power for binary response, a SNP G and two covariate (one binary, one continuous) that are conditionally dependent given G, using the Semi-Sim method.
#'
#' @param n An integer number that indicates the sample size.
#' @param B An integer number that indicates the number of simulated sample to approximate the fisher information matrix, by default is 10000.
#' @param parameters Refer to SPCompute::Compute_Power_Sim; Except betaE and gammaG have to be vectors of length 2. If exists, the binary covariate is assumed to be the first covariate. The parameter gammaE is a single parameter specifying the conditional dependency between E1 and E2 given G (i.e. coefficient of E1 when regressing E2 on E1 and G).
#' @param mode A string of either "additive", "dominant" or "recessive", indicating the genetic mode, by default is "additive".
#' @param mode A string of either "additive", "dominant" or "recessive", indicating the genetic mode, by default is "additive".
#' @param alpha A numeric value that denotes the significance level used in the study, by default is 0.05.
#' @param seed An integer number that indicates the seed used for the simulation to compute the approximate fisher information matrix, by default is 123.
#' @param searchSizeBeta0 The interval radius for the numerical search of beta0, by default is 8. Setting to higher values may solve some numerical problems at the cost of longer runtime.
#' @param searchSizeGamma0 The interval radius for the numerical search of gamma0, by default is 8. Setting to higher values may solve some numerical problems at the cost of longer runtime.
#' @param LargePowerApproxi TRUE or FALSE indicates whether to use the large power approximation formula.
#' @return The power that can be achieved at the given sample size (using semi-sim method).
#' @noRd
Compute_Power_Sim_BBC_dep <- function(n, B = 10000, parameters, mode = "additive", alpha = 0.05, seed = 123, searchSizeBeta0 = 8, searchSizeGamma0 = 8, LargePowerApproxi = FALSE){
ComputeEgivenG <- function(gamma0,gammaG,G, E = 1){
PEG <- (exp(gamma0 + gammaG * G)^E)/(1+exp(gamma0 + gammaG * G))
PEG
}
ComputeYgivenGE <- function(beta0,betaG, betaE1, betaE2, G, E1, E2, Y = 1){
PYGE <- (exp(beta0 + betaG * G + betaE1 * E1 + betaE2 * E2)^Y)/(1 + exp(beta0 + betaG * G + betaE1 * E1 + betaE2 * E2))
PYGE
}
preva <- parameters$preva
gammaG1 <- parameters$gammaG[1]
gammaG2 <- parameters$gammaG[2]
betaE1 <- parameters$betaE[1]
betaE2 <- parameters$betaE[2]
pE <- parameters$pE
muE <- parameters$muE
sigmaE <- parameters$sigmaE
betaG <- parameters$betaG
gammaE1 <- parameters$gammaE
if(mode == "additive"){
pG <- parameters$pG
qG <- 1 - pG
EG <- 2*pG*qG + 2*pG^2
EG2 <- (2*pG*qG + 4*pG^2)
varG <- EG2 - (EG)^2
solveForgamma0 <- function(pE,gammaG, pG){
qG <- 1 - pG
ComputePE <- function(gamma0){
PE <- ComputeEgivenG(gamma0,gammaG,G = 0) * (qG^2) + ComputeEgivenG(gamma0,gammaG,G = 2) * (pG^2) +
ComputeEgivenG(gamma0,gammaG,G = 1) * (2*qG*pG)
PE - pE
}
stats::uniroot(ComputePE, c(-searchSizeGamma0, searchSizeGamma0))$root
}
gamma01 <- solveForgamma0(pE, gammaG1, pG)
gamma02 <- muE - gammaG2 * EG - gammaE1*pE
EGE <- 2 * ComputeEgivenG(gamma01,gammaG1,G = 2) * (pG^2) + ComputeEgivenG(gamma01,gammaG1,G = 1) * (2*qG*pG)
EE <- pE * (1-pE)
covGE <- EGE - EG*EE
h2 <- (gammaG2^2) * varG + (gammaE1^2)*(EE) + (gammaG2 * gammaE1) * covGE
I <- matrix(data = 0, nrow = 4, ncol = 4)
if((sigmaE^2) <= h2){return(message("Error: SigmaE must be larger to be compatible with other parameters"))}
sigmaError <- sqrt(sigmaE^2 - (gammaG2^2) * varG - h2)
solveForbeta0_add_con <- function(preva, betaG, betaE1, betaE2, pG, gammaG1, gammaG2, gammaE1){
qG <- 1 - pG
ComputeP <- function(beta0){
set.seed(seed)
G <- sample(c(0,1,2), size = B, replace = TRUE, prob = c(qG^2, 2*pG*qG, pG^2))
E1 <- gamma01 + gammaG1 * G + stats::rlogis(B)
E1 <- ifelse(E1 >= 0, 1, 0)
E2 <- gamma02 + gammaG2 * G + gammaE1 * E1 + stats::rnorm(B, sd = sigmaError)
y <- beta0 + betaG * G + betaE1 * E1 + betaE2 * E2 + stats::rlogis(B)
P <- mean(ifelse(y > 0, 1, 0))
P - preva
}
stats::uniroot(ComputeP, c(-searchSizeBeta0, searchSizeBeta0))$root
}
beta0 <- solveForbeta0_add_con(preva, betaG, betaE1, betaE2, pG, gammaG1, gammaG2, gammaE1)
### Simulate for SE: by averaging B times
set.seed(seed)
for (i in 1:B) {
G <- sample(c(0,1,2), size = 1, replace = TRUE, prob = c(qG^2,2*pG*qG, pG^2))
E1 <- gamma01 + gammaG1*G + stats::rlogis(1)
E1 <- ifelse(E1 >= 0, 1, 0)
E2 <- gamma02 + gammaG2*G + gammaE1 * E1 + stats::rnorm(1,sd = sigmaError)
X <- matrix(c(1,G,E1,E2), ncol = 1)
eta <- beta0 + betaG*G + betaE1*E1 + betaE2*E2
weight <- stats::dlogis(eta)
I <- I + weight* X %*% t(X)
}
I <- I/B
if(LargePowerApproxi){
SE <- sqrt((solve(I)[2,2]))/sqrt(n)
return(stats::pnorm(-stats::qnorm(1-(alpha/2)) + betaG/SE))
}
else{
compute_power <- function(n){
### Once know this (expected) single I, scale by dividing sqrt(n): n is sample size
SE = sqrt((solve(I)[2,2]))/sqrt(n)
### Once know this SE of betaG hat, compute its power at this given sample size n:
Power = stats::pnorm(-stats::qnorm(1-(alpha/2)) + betaG/SE ) + stats::pnorm(-stats::qnorm(1-(alpha/2)) - betaG/SE)
Power
}
compute_power(n)
}
}
else if(mode == "dominant"){
pG <- 2*parameters$pG*(1-parameters$pG) + parameters$pG^2
qG <- 1 - pG
EG <- pG
EG2 <- pG
varG <- EG2 - (EG)^2
solveForgamma0 <- function(pE,gammaG, pG){
qG <- 1 - pG
ComputePE <- function(gamma0){
PE <- ComputeEgivenG(gamma0,gammaG,G = 0) * (qG) + ComputeEgivenG(gamma0,gammaG,G = 1) * (pG)
PE - pE
}
stats::uniroot(ComputePE, c(-searchSizeGamma0, searchSizeGamma0))$root
}
gamma01 <- solveForgamma0(pE, gammaG1, pG)
gamma02 <- muE - gammaG2 * EG - gammaE1*pE
EGE <- ComputeEgivenG(gamma01,gammaG1,G = 1) * (pG)
EE <- pE * (1-pE)
covGE <- EGE - EG*EE
h2 <- (gammaG2^2) * varG + (gammaE1^2)*(EE) + (gammaG2 * gammaE1) * covGE
I <- matrix(data = 0, nrow = 4, ncol = 4)
if((sigmaE^2) <= h2){return(message("Error: SigmaE must be larger to be compatible with other parameters"))}
sigmaError <- sqrt(sigmaE^2 - h2)
solveForbeta0_dom_con <- function(preva, betaG, betaE1, betaE2, pG, gammaG1, gammaG2, gammaE1){
qG <- 1 - pG
ComputeP <- function(beta0){
set.seed(seed)
G <- sample(c(0,1), size = B, replace = TRUE, prob = c(qG, pG))
E1 <- gamma01 + gammaG1 * G + stats::rlogis(B)
E1 <- ifelse(E1 >= 0, 1, 0)
E2 <- gamma02 + gammaG2 * G + gammaE1 * E1 + stats::rnorm(B, sd = sigmaError)
y <- beta0 + betaG * G + betaE1 * E1 + betaE2 * E2 + stats::rlogis(B)
P <- mean(ifelse(y > 0, 1, 0))
P - preva
}
stats::uniroot(ComputeP, c(-searchSizeBeta0, searchSizeBeta0))$root
}
beta0 <- solveForbeta0_dom_con(preva, betaG, betaE1, betaE2, pG, gammaG1, gammaG2, gammaE1)
### Simulate for SE: by averaging B times
set.seed(seed)
for (i in 1:B) {
G <- sample(c(0,1), size = 1, replace = TRUE, prob = c(qG, pG))
E1 <- gamma01 + gammaG1*G + stats::rlogis(1)
E1 <- ifelse(E1 >= 0, 1, 0)
E2 <- gamma02 + gammaG2*G + gammaE1 * E1 + stats::rnorm(1,sd = sigmaError)
X <- matrix(c(1,G,E1,E2), ncol = 1)
eta <- beta0 + betaG*G + betaE1*E1 + betaE2*E2
weight <- stats::dlogis(eta)
I <- I + weight* X %*% t(X)
}
I <- I/B
if(LargePowerApproxi){
SE <- sqrt((solve(I)[2,2]))/sqrt(n)
return(stats::pnorm(-stats::qnorm(1-(alpha/2)) + betaG/SE))
}
else{
compute_power <- function(n){
### Once know this (expected) single I, scale by dividing sqrt(n): n is sample size
SE = sqrt((solve(I)[2,2]))/sqrt(n)
### Once know this SE of betaG hat, compute its power at this given sample size n:
Power = stats::pnorm(-stats::qnorm(1-(alpha/2)) + betaG/SE ) + stats::pnorm(-stats::qnorm(1-(alpha/2)) - betaG/SE)
Power
}
compute_power(n)
}
}
else if(mode == "recessive") {
preva <- parameters$preva
pG <- parameters$pG^2
qG <- 1 - pG
EG <- pG
EG2 <- pG
varG <- EG2 - (EG)^2
solveForgamma0 <- function(pE,gammaG, pG){
qG <- 1 - pG
ComputePE <- function(gamma0){
PE <- ComputeEgivenG(gamma0,gammaG,G = 0) * (qG) + ComputeEgivenG(gamma0,gammaG,G = 1) * (pG)
PE - pE
}
stats::uniroot(ComputePE, c(-searchSizeGamma0, searchSizeGamma0))$root
}
gamma01 <- solveForgamma0(pE, gammaG1, pG)
gamma02 <- muE - gammaG2 * EG - gammaE1*pE
EGE <- ComputeEgivenG(gamma01,gammaG1,G = 1) * (pG)
EE <- pE * (1-pE)
covGE <- EGE - EG*EE
h2 <- (gammaG2^2) * varG + (gammaE1^2)*(EE) + (gammaG2 * gammaE1) * covGE
I <- matrix(data = 0, nrow = 4, ncol = 4)
if((sigmaE^2) <= h2){return(message("Error: SigmaE must be larger to be compatible with other parameters"))}
sigmaError <- sqrt(sigmaE^2 - h2)
solveForbeta0_rec_con <- function(preva, betaG, betaE1, betaE2, pG, gammaG1, gammaG2, gammaE1){
qG <- 1 - pG
ComputeP <- function(beta0){
set.seed(seed)
G <- sample(c(0,1), size = B, replace = TRUE, prob = c(qG, pG))
E1 <- gamma01 + gammaG1 * G + stats::rlogis(B)
E1 <- ifelse(E1 >= 0, 1, 0)
E2 <- gamma02 + gammaG2 * G + gammaE1 * E1 + stats::rnorm(B, sd = sigmaError)
y <- beta0 + betaG * G + betaE1 * E1 + betaE2 * E2 + stats::rlogis(B)
P <- mean(ifelse(y > 0, 1, 0))
P - preva
}
stats::uniroot(ComputeP, c(-searchSizeBeta0, searchSizeBeta0))$root
}
beta0 <- solveForbeta0_rec_con(preva, betaG, betaE1, betaE2, pG, gammaG1, gammaG2, gammaE1)
### Simulate for SE: by averaging B times
set.seed(seed)
for (i in 1:B) {
G <- sample(c(0,1), size = 1, replace = TRUE, prob = c(qG, pG))
E1 <- gamma01 + gammaG1*G + stats::rlogis(1)
E1 <- ifelse(E1 >= 0, 1, 0)
E2 <- gamma02 + gammaG2*G + gammaE1 * E1 + stats::rnorm(1,sd = sigmaError)
X <- matrix(c(1,G,E1,E2), ncol = 1)
eta <- beta0 + betaG*G + betaE1*E1 + betaE2*E2
weight <- stats::dlogis(eta)
I <- I + weight* X %*% t(X)
}
I <- I/B
if(LargePowerApproxi){
SE <- sqrt((solve(I)[2,2]))/sqrt(n)
return(stats::pnorm(-stats::qnorm(1-(alpha/2)) + betaG/SE))
}
else{
compute_power <- function(n){
### Once know this (expected) single I, scale by dividing sqrt(n): n is sample size
SE = sqrt((solve(I)[2,2]))/sqrt(n)
### Once know this SE of betaG hat, compute its power at this given sample size n:
Power = stats::pnorm(-stats::qnorm(1-(alpha/2)) + betaG/SE ) + stats::pnorm(-stats::qnorm(1-(alpha/2)) - betaG/SE)
Power
}
compute_power(n)
}
}
}
#' Compute the required power for binary response, a SNP G and two covariate (one binary, one continuous) that are conditionally dependent given G, using the empirical power.
#'
#' @param n An integer number that indicates the sample size.
#' @param B An integer number that indicates the number of simulated sample, by default is 10000.
#' @param parameters Refer to SPCompute::Compute_Power_Sim; Except betaE and gammaG have to be vectors of length 2. If exists, the binary covariate is assumed to be the first covariate. The parameter gammaE is a single parameter specifying the conditional dependency between E1 and E2 given G (i.e. coefficient of E1 when regressing E2 on E1 and G).
#' @param mode A string of either "additive", "dominant" or "recessive", indicating the genetic mode, by default is "additive".
#' @param alpha A numeric value that denotes the significance level used in the study, by default is 0.05.
#' @param seed An integer number that indicates the seed used for the simulation, by default is 123.
#' @param searchSizeBeta0 The interval radius for the numerical search of beta0, by default is 8. Setting to higher values may solve some numerical problems at the cost of longer runtime.
#' @param searchSizeGamma0 The interval radius for the numerical search of gamma0, by default is 8. Setting to higher values may solve some numerical problems at the cost of longer runtime.
#' @param LargePowerApproxi TRUE or FALSE indicates whether to use the large power approximation formula.
#' @return The power that can be achieved at the given sample size (using semi-sim method).
#' @noRd
Compute_Power_Emp_BBC_dep <- function(n, B = 10000, parameters, mode = "additive", alpha = 0.05, seed = 123, searchSizeBeta0 = 8, searchSizeGamma0 = 8, LargePowerApproxi = FALSE){
ComputeEgivenG <- function(gamma0,gammaG,G, E = 1){
PEG <- (exp(gamma0 + gammaG * G)^E)/(1+exp(gamma0 + gammaG * G))
PEG
}
ComputeYgivenGE <- function(beta0,betaG, betaE1, betaE2, G, E1, E2, Y = 1){
PYGE <- (exp(beta0 + betaG * G + betaE1 * E1 + betaE2 * E2)^Y)/(1 + exp(beta0 + betaG * G + betaE1 * E1 + betaE2 * E2))
PYGE
}
correct <- c()
preva <- parameters$preva
gammaG1 <- parameters$gammaG[1]
gammaG2 <- parameters$gammaG[2]
betaE1 <- parameters$betaE[1]
betaE2 <- parameters$betaE[2]
pE <- parameters$pE
muE <- parameters$muE
sigmaE <- parameters$sigmaE
betaG <- parameters$betaG
gammaE1 <- parameters$gammaE
if(mode == "additive"){
pG <- parameters$pG
qG <- 1 - pG
EG <- 2*pG*qG + 2*pG^2
EG2 <- (2*pG*qG + 4*pG^2)
varG <- EG2 - (EG)^2
solveForgamma0 <- function(pE,gammaG, pG){
qG <- 1 - pG
ComputePE <- function(gamma0){
PE <- ComputeEgivenG(gamma0,gammaG,G = 0) * (qG^2) + ComputeEgivenG(gamma0,gammaG,G = 2) * (pG^2) +
ComputeEgivenG(gamma0,gammaG,G = 1) * (2*qG*pG)
PE - pE
}
stats::uniroot(ComputePE, c(-searchSizeGamma0, searchSizeGamma0))$root
}
gamma01 <- solveForgamma0(pE, gammaG1, pG)
gamma02 <- muE - gammaG2 * EG - gammaE1*pE
EGE <- 2 * ComputeEgivenG(gamma01,gammaG1,G = 2) * (pG^2) + ComputeEgivenG(gamma01,gammaG1,G = 1) * (2*qG*pG)
EE <- pE * (1-pE)
covGE <- EGE - EG*EE
h2 <- (gammaG2^2) * varG + (gammaE1^2)*(EE) + (gammaG2 * gammaE1) * covGE
I <- matrix(data = 0, nrow = 4, ncol = 4)
if((sigmaE^2) <= h2){return(message("Error: SigmaE must be larger to be compatible with other parameters"))}
sigmaError <- sqrt(sigmaE^2 - (gammaG2^2) * varG - h2)
solveForbeta0_add_con <- function(preva, betaG, betaE1, betaE2, pG, gammaG1, gammaG2, gammaE1){
qG <- 1 - pG
ComputeP <- function(beta0){
set.seed(seed)
G <- sample(c(0,1,2), size = B, replace = TRUE, prob = c(qG^2, 2*pG*qG, pG^2))
E1 <- gamma01 + gammaG1 * G + stats::rlogis(B)
E1 <- ifelse(E1 >= 0, 1, 0)
E2 <- gamma02 + gammaG2 * G + gammaE1 * E1 + stats::rnorm(B, sd = sigmaError)
y <- beta0 + betaG * G + betaE1 * E1 + betaE2 * E2 + stats::rlogis(B)
P <- mean(ifelse(y > 0, 1, 0))
P - preva
}
stats::uniroot(ComputeP, c(-searchSizeBeta0, searchSizeBeta0))$root
}
beta0 <- solveForbeta0_add_con(preva, betaG, betaE1, betaE2, pG, gammaG1, gammaG2, gammaE1)
### Simulate for SE: by averaging B times
set.seed(seed)
for (i in 1:B) {
G <- sample(c(0,1,2), size = n, replace = TRUE, prob = c(qG^2,2*pG*qG, pG^2))
E1 <- gamma01 + gammaG1*G + stats::rlogis(n)
E1 <- ifelse(E1 >= 0, 1, 0)
E2 <- gamma02 + gammaG2*G + stats::rnorm(n,sd = sigmaError)
y <- beta0 + betaE1 * E1 + betaE2 * E2 + betaG * G + stats::rlogis(n)
y <- ifelse(y > 0, 1, 0)
correct[i] <- summary(stats::glm(y~ G + E1 + E2, family = stats::binomial("logit")))$coefficients[2,4] <= alpha
}
Power <- sum(correct)/B
}
else if(mode == "dominant"){
pG <- 2*parameters$pG*(1-parameters$pG) + parameters$pG^2
qG <- 1 - pG
EG <- pG
EG2 <- pG
varG <- EG2 - (EG)^2
solveForgamma0 <- function(pE,gammaG, pG){
qG <- 1 - pG
ComputePE <- function(gamma0){
PE <- ComputeEgivenG(gamma0,gammaG,G = 0) * (qG) + ComputeEgivenG(gamma0,gammaG,G = 1) * (pG)
PE - pE
}
stats::uniroot(ComputePE, c(-searchSizeGamma0, searchSizeGamma0))$root
}
gamma01 <- solveForgamma0(pE, gammaG1, pG)
gamma02 <- muE - gammaG2 * EG - gammaE1*pE
EGE <- ComputeEgivenG(gamma01,gammaG1,G = 1) * (pG)
EE <- pE * (1-pE)
covGE <- EGE - EG*EE
h2 <- (gammaG2^2) * varG + (gammaE1^2)*(EE) + (gammaG2 * gammaE1) * covGE
I <- matrix(data = 0, nrow = 4, ncol = 4)
if((sigmaE^2) <= h2){return(message("Error: SigmaE must be larger to be compatible with other parameters"))}
sigmaError <- sqrt(sigmaE^2 - h2)
solveForbeta0_dom_con <- function(preva, betaG, betaE1, betaE2, pG, gammaG1, gammaG2, gammaE1){
qG <- 1 - pG
ComputeP <- function(beta0){
set.seed(seed)
G <- sample(c(0,1), size = B, replace = TRUE, prob = c(qG, pG))
E1 <- gamma01 + gammaG1 * G + stats::rlogis(B)
E1 <- ifelse(E1 >= 0, 1, 0)
E2 <- gamma02 + gammaG2 * G + gammaE1 * E1 + stats::rnorm(B, sd = sigmaError)
y <- beta0 + betaG * G + betaE1 * E1 + betaE2 * E2 + stats::rlogis(B)
P <- mean(ifelse(y > 0, 1, 0))
P - preva
}
stats::uniroot(ComputeP, c(-searchSizeBeta0, searchSizeBeta0))$root
}
beta0 <- solveForbeta0_dom_con(preva, betaG, betaE1, betaE2, pG, gammaG1, gammaG2, gammaE1)
### Simulate for SE: by averaging B times
set.seed(seed)
for (i in 1:B) {
G <- sample(c(0,1), size = n, replace = TRUE, prob = c(qG, pG))
E1 <- gamma01 + gammaG1*G + stats::rlogis(n)
E1 <- ifelse(E1 >= 0, 1, 0)
E2 <- gamma02 + gammaG2*G + stats::rnorm(n,sd = sigmaError)
y <- beta0 + betaE1 * E1 + betaE2 * E2 + betaG * G + stats::rlogis(n)
y <- ifelse(y > 0, 1, 0)
correct[i] <- summary(stats::glm(y~ G + E1 + E2, family = stats::binomial("logit")))$coefficients[2,4] <= alpha
}
Power <- sum(correct)/B
}
else if(mode == "recessive") {
preva <- parameters$preva
pG <- parameters$pG^2
qG <- 1 - pG
EG <- pG
EG2 <- pG
varG <- EG2 - (EG)^2
solveForgamma0 <- function(pE,gammaG, pG){
qG <- 1 - pG
ComputePE <- function(gamma0){
PE <- ComputeEgivenG(gamma0,gammaG,G = 0) * (qG) + ComputeEgivenG(gamma0,gammaG,G = 1) * (pG)
PE - pE
}
stats::uniroot(ComputePE, c(-searchSizeGamma0, searchSizeGamma0))$root
}
gamma01 <- solveForgamma0(pE, gammaG1, pG)
gamma02 <- muE - gammaG2 * EG - gammaE1*pE
EGE <- ComputeEgivenG(gamma01,gammaG1,G = 1) * (pG)
EE <- pE * (1-pE)
covGE <- EGE - EG*EE
h2 <- (gammaG2^2) * varG + (gammaE1^2)*(EE) + (gammaG2 * gammaE1) * covGE
I <- matrix(data = 0, nrow = 4, ncol = 4)
if((sigmaE^2) <= h2){return(message("Error: SigmaE must be larger to be compatible with other parameters"))}
sigmaError <- sqrt(sigmaE^2 - h2)
solveForbeta0_rec_con <- function(preva, betaG, betaE1, betaE2, pG, gammaG1, gammaG2, gammaE1){
qG <- 1 - pG
ComputeP <- function(beta0){
set.seed(seed)
G <- sample(c(0,1), size = B, replace = TRUE, prob = c(qG, pG))
E1 <- gamma01 + gammaG1 * G + stats::rlogis(B)
E1 <- ifelse(E1 >= 0, 1, 0)
E2 <- gamma02 + gammaG2 * G + gammaE1 * E1 + stats::rnorm(B, sd = sigmaError)
y <- beta0 + betaG * G + betaE1 * E1 + betaE2 * E2 + stats::rlogis(B)
P <- mean(ifelse(y > 0, 1, 0))
P - preva
}
stats::uniroot(ComputeP, c(-searchSizeBeta0, searchSizeBeta0))$root
}
beta0 <- solveForbeta0_rec_con(preva, betaG, betaE1, betaE2, pG, gammaG1, gammaG2, gammaE1)
### Simulate for SE: by averaging B times
set.seed(seed)
for (i in 1:B) {
G <- sample(c(0,1), size = n, replace = TRUE, prob = c(qG, pG))
E1 <- gamma01 + gammaG1*G + stats::rlogis(n)
E1 <- ifelse(E1 >= 0, 1, 0)
E2 <- gamma02 + gammaG2*G + stats::rnorm(n,sd = sigmaError)
y <- beta0 + betaE1 * E1 + betaE2 * E2 + betaG * G + stats::rlogis(n)
y <- ifelse(y > 0, 1, 0)
correct[i] <- summary(stats::glm(y~ G + E1 + E2, family = stats::binomial("logit")))$coefficients[2,4] <= alpha
}
Power <- sum(correct)/B
}
Power
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.