#' @export
ccrepe <-
function(
#*************************************************************************************
#* ccrepe *
#*************************************************************************************
x=NA, #Data Frame 1 - For ccrepe and nc.score
y=NA, #Data Frame 2 - For ccrepe and nc.score
sim.score = cor, #Default
sim.score.args = list(), #Arguments for the method
min.subj = 20, #Minimum rows in "data" frame to proceed (If not - run stops) - For ccrepe
iterations = 1000, #Reboot iterations - For ccrepe
subset.cols.x = NULL, #Subset of cols from cav1 to iterate on (NULL = ALL) - For ccrepe
subset.cols.y = NULL, #Subset of cols from cav2 to iterate on (NULL = ALL) - For ccrepe
errthresh = 0.0001, #Threshold error if there is enough data to calculate cor an pval for certain i and k - For first dataset
verbose = FALSE, #Request for verbose output
iterations.gap = 100, #If output is verbose - after how many iterations issue a status message?
distributions = NA, #Output Distribution file - For ccrepe
compare.within.x=TRUE, #Boolean of whether to do comparisons within subset.cols.x or between subset.cols.x and subset.cols.y
renormalize = TRUE, # Specifies whether we want to renormalize the data. Should be disabled when handling absolute abundances
memory.optimize = FALSE #Specifies whether we want to optimize to reduce memory usage. Currently only works on the case with one dataset.
)
{
#**********************************************************************
# Invoke ccrepe using the method *
#**********************************************************************
CA <-list(data1=x,
data2=y,
min.subj=min.subj,
iterations=iterations,
subset.cols.1=subset.cols.x,
subset.cols.2=subset.cols.y,
compare.within.x=compare.within.x,
errthresh=errthresh,
method=sim.score,
method.args=sim.score.args,
verbose=verbose,
iterations.gap=iterations.gap,
outdist=distributions,
renormalize=renormalize,
memory.optimize = memory.optimize
)
CA <- ccrepe.calculations(CA)
return(CA)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.