View source: R/classifyTumor.R
classifyTumorCells | R Documentation |
classifyTumorCells Classify tumour and normal cells from the raw count matrix, using normal cells in the matrix or by subtracting a synthetic baseline from the matrix if there are no normal cells in the matrix.
classifyTumorCells(
count_mtx,
annot_mtx,
sample = "",
distance = "euclidean",
par_cores = 20,
ground_truth = NULL,
norm_cell_names = NULL,
SEGMENTATION_CLASS = TRUE,
SMOOTH = TRUE,
beta_vega = 0.5,
FIXED_NORMAL_CELLS = FALSE
)
count_mtx |
raw count matrix |
annot_mtx |
matrix containing the annotations of the genes (rows: genes, columns: chr start end) |
sample |
sample name (optional) |
distance |
distance used in hierarchical clustering (default euclidean) |
par_cores |
number of cores (default 20) |
norm_cell_names |
confident normal cells (optional) |
SEGMENTATION_CLASS |
Boolean value to perform segmentation before classification (default TRUE) |
SMOOTH |
Boolean value to perform smoothing (default TRUE) |
beta_vega |
specifies beta parameter for segmentation, higher beta for more coarse-grained segmentation. (default 0.5) |
FIXED_NORMAL_CELLS |
TRUE if vector of norm_cell to be used as reference fixed, if you are interested only in clonal structure e non nella classificazione normal/tumor (default FALSE) |
gr_truth |
ground truth of classification (optional) |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.