# Croucher-base.R -- https://walkingrandomly.com/?p=5254
# NLSProbName: Croucher-base
# NLSProbDescription: {This is a fairly simple 2-parameter problem. This file is the "base"
# from which others in the Croucher family are built.}
xdata <- c(-2,-1.64,-1.33,-0.7,0,0.45,1.2,1.64,2.32,2.9)
ydata <- c(0.699369,0.700462,0.695354,1.03905,1.97389,2.41143,1.91091,0.919576,-0.730975,-1.42001)
p1<- 1
p2<-0.2
NLSformula <- ydata ~ p1*cos(p2*xdata) + p2*sin(p1*xdata)
NLSstart<-list(p1=p1,p2=p2) # This is the default start given in the reference.
NLStestdata<-data.frame(xdata, ydata)
NLSweights <- rep(0.25, length(xdata))
NLSsubset<-1:8
NLSlower<-c(0,0)
NLSupper<-c(1.5, 1.5)
NLSrunline <- "(formula=NLSformula, data=NLStestdata, start=NLSstart)"
output_nls <- eval(parse(text=paste("nls",NLSrunline))) # nls is our benchmark case
output_nlsj <- eval(parse(text=paste("nlsj::nlsj",NLSrunline))) # nlsj is the new nls
## Test expectations using testthat
#library(testthat) # comment out later!!
#### TESTING nls VS nlsj
# SETTING TOLERANCE
epstol <- sqrt(.Machine$double.eps*100) # Can replace 100 with nls.control()$offset
# NLSout/expout has "m", "convInfo", "data", "call",
# "dataClasses", "control"
## testing m values: "resid" "fitted" "formula" "deviance" "lhs"
# "gradient" "conv" "incr" "setVarying" "setPars"
# "getPars" "getAllPars" "getEnv" "trace" "Rmat"
# "predict"
test_that("testing m objects",{ #FAILED
# residuals
expect_equal(as.vector(resid(output_nls)),
as.vector(resid(output_nlsj)),
tolerance=epstol*(max(abs(c(as.vector(resid(output_nls)),
as.vector(resid(output_nlsj)))
)) + epstol))
# # fitted
# expect_equal(as.vector(fitted(output_nls)),
# as.vector(fitted(output_nlsj)))
# # formula
# expect_equal(formula(output_nls),
# formula(output_nlsj))
# deviance
expect_equal(deviance(output_nls),
deviance(output_nlsj),
tolerance=epstol*(max(abs(c(deviance(output_nls),
deviance(output_nlsj))
)) + epstol))
# gradient
expect_equal( output_nls$m$gradient(),
attr(output_nlsj$m$resid(),"gradient"),
tolerance=epstol*(max(abs(c(output_nls$m$gradient(),
attr(output_nlsj$m$resid(),"gradient"))
)) + epstol))
# # conv
# expect_equal( output_nls$m$conv(),
# output_nlsj$m$conv())
# ## incr
# #expect_equal( output_nls$m$incr(),
# # output_nlsj$m$incr())
# getPars # difference between getAllPars adn getPars?
expect_equal( output_nls$m$getPars(),
output_nlsj$m$getPars())
# ## getEnv
# #expect_equal( output_nls$m$igetEnv(),
# # output_nlsj$m$getEnv())
# # trace
# ##expect_equal( output_nls$m$trace(), ## Not run as it prints(devaince,conv,pars)
# ## output_nlsj$m$trace())
# Rmat
expect_equal( output_nls$m$Rmat(),
output_nlsj$m$Rmat(),
tolerance=epstol*(max(abs(c(output_nls$m$Rmat(),
output_nls$m$Rmat())
)) + epstol))
# # predict
# expect_equal( output_nls$m$predict(),
# output_nlsj$m$predict())
}
)
## testing control #FAILED
#test_that("testing control list items",{
# expect_equal(output_nls$control,
# output_nlsj$control)
# }
#)
# testing convInfo # FAILED
test_that("testing conInfo list items",{
expect_equal(as.numeric(output_nls$convInfo$isConv),
as.numeric(output_nlsj$convInfo))
}
)
print("End of test file 'Croucher_base.R' ")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.