View source: R/extract_lmFit.R
| extract_lmFit | R Documentation | 
Extract model fit and significance for all individual variables and/or contrasts in a limma model
extract_lmFit(
  design,
  fit,
  contrast_mat = NULL,
  dat_genes = NULL,
  name_genes = "geneName",
  contrast.mat = NULL,
  dat.genes = NULL,
  name.genes = NULL
)
| design | model matrix output by model.matrix( ) | 
| fit | MArrayLM model fit output by limma::eBayes( ) | 
| contrast_mat | contrast matrix output by limma::makeContrasts( ). NOTE: When using constrasts, the result will not exactly match extract_kmFit due to limma's naming of contrast levels as variableLEVEL | 
| dat_genes | data frame with additional gene annotations. Optional. If not provided, the fit object is also checked for gene annotation information. | 
| name_genes | character for variable name in dat_genes that matches gene names in fit | 
| contrast.mat | Deprecated form of contrast_mat | 
| dat.genes | Deprecated form of dat_genes | 
| name.genes | Deprecated form of name_genes | 
List with data frames. One for model fit (sigma) and one for significance for all variable and genes. Variables names as in limma::topTable( )
# Run limma model
design <- model.matrix(~ virus, data = example.voom$targets)
fit <- limma::eBayes(limma::lmFit(example.voom$E, design))
## Get results
fdr <- extract_lmFit(design = design, fit = fit)
## Get results and add gene annotations
fdr <- extract_lmFit(design = design, fit = fit,
                        dat_genes = example.voom$genes)
# Run limma contrasts model
design <- model.matrix(~ 0 + virus, data = example.voom$targets)
fit <- limma::lmFit(example.voom$E, design)
contrast_mat <- limma::makeContrasts(virusHRV-virusnone, levels = design)
fit <- limma::eBayes(limma::contrasts.fit(fit, contrast_mat))
## Get contrast results
fdr <- extract_lmFit(design = design, fit = fit, contrast_mat = contrast_mat)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.