View source: R/extract_lmFit.R
extract_lmFit | R Documentation |
Extract model fit and significance for all individual variables and/or contrasts in a limma model
extract_lmFit(
design,
fit,
contrast_mat = NULL,
dat_genes = NULL,
name_genes = "geneName",
contrast.mat = NULL,
dat.genes = NULL,
name.genes = NULL
)
design |
model matrix output by model.matrix( ) |
fit |
MArrayLM model fit output by limma::eBayes( ) |
contrast_mat |
contrast matrix output by limma::makeContrasts( ). NOTE: When using constrasts, the result will not exactly match extract_kmFit due to limma's naming of contrast levels as variableLEVEL |
dat_genes |
data frame with additional gene annotations. Optional. If not provided, the fit object is also checked for gene annotation information. |
name_genes |
character for variable name in dat_genes that matches gene names in fit |
contrast.mat |
Deprecated form of contrast_mat |
dat.genes |
Deprecated form of dat_genes |
name.genes |
Deprecated form of name_genes |
List with data frames. One for model fit (sigma) and one for significance for all variable and genes. Variables names as in limma::topTable( )
# Run limma model
design <- model.matrix(~ virus, data = example.voom$targets)
fit <- limma::eBayes(limma::lmFit(example.voom$E, design))
## Get results
fdr <- extract_lmFit(design = design, fit = fit)
## Get results and add gene annotations
fdr <- extract_lmFit(design = design, fit = fit,
dat_genes = example.voom$genes)
# Run limma contrasts model
design <- model.matrix(~ 0 + virus, data = example.voom$targets)
fit <- limma::lmFit(example.voom$E, design)
contrast_mat <- limma::makeContrasts(virusHRV-virusnone, levels = design)
fit <- limma::eBayes(limma::contrasts.fit(fit, contrast_mat))
## Get contrast results
fdr <- extract_lmFit(design = design, fit = fit, contrast_mat = contrast_mat)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.