test_tomodel_path <- testthat::test_path("test_data", "to_model_ls.Rds")
to.model.ls <- readRDS(test_tomodel_path)
to.model.df <- to.model.ls[["to.model"]]
tst.df <- to.model.df[to.model.df$rowname == "ENSG00000000460", ]
res.lm.fit <- kimma_lm(
model_lm = "expression~virus+asthma",
to_model_gene = tst.df,
gene = "ENSG00000000460",
use_weights = TRUE,
metrics = FALSE
)
testthat::test_that("kmFit_contrast produces correct results", {
res <- kmFit_contrast(
fit = res.lm.fit[["fit"]],
contrast_var = "virus",
to_model_gene = tst.df,
genotype_name = NULL
)
estimate.val <- res[["estimate"]]
contrast.ref <- res[["contrast_ref"]]
contrast.lvl <- res[["contrast_lvl"]]
testthat::expect_true(contrast.ref == "none")
testthat::expect_true(contrast.lvl == "HRV")
testthat::expect_equal(estimate.val, 0.4630, tolerance = 0.001)
})
testthat::test_that("kmFit_contrast produces correct results with interaction term", {
res <- kmFit_contrast(
fit = res.lm.fit[["fit"]],
contrast_var = "virus:asthma",
to_model_gene = tst.df,
genotype_name = NULL
)
testthat::expect_equal(
res[res$contrast_ref == "none healthy" & res$contrast_lvl == "HRV healthy", ][["estimate"]],
0.4630,
tolerance = 0.001
)
testthat::expect_equal(
res[res$contrast_ref == "none healthy" & res$contrast_lvl == "none asthma", ][["estimate"]],
0.7872,
tolerance = 0.001
)
testthat::expect_equal(
res[res$contrast_ref == "none healthy" & res$contrast_lvl == "HRV asthma", ][["estimate"]],
1.2502,
tolerance = 0.001
)
testthat::expect_equal(
res[res$contrast_ref == "HRV healthy" & res$contrast_lvl == "none asthma", ][["estimate"]],
0.3241,
tolerance = 0.001
)
testthat::expect_equal(
res[res$contrast_ref == "HRV healthy" & res$contrast_lvl == "HRV asthma", ][["estimate"]],
0.7872,
tolerance = 0.001
)
testthat::expect_equal(
res[res$contrast_ref == "none asthma" & res$contrast_lvl == "HRV asthma", ][["estimate"]],
0.4630,
tolerance = 0.001
)
})
testthat::test_that(
"kmFit_contrast produces correct results when interaction term is numeric", {
res.lm.fit <- kimma_lm(
model_lm = "expression~virus + virus * median_cv_coverage",
to_model_gene = tst.df,
gene = "ENSG00000000460",
use_weights = TRUE,
metrics = FALSE
)
res <- kmFit_contrast(
fit = res.lm.fit[["fit"]],
contrast_var = "virus:median_cv_coverage",
to_model_gene = tst.df,
genotype_name = NULL
)
estimate.val <- res[["estimate"]]
contr.var <- res[["variable"]]
contrast.ref <- res[["contrast_ref"]]
contrast.lvl <- res[["contrast_lvl"]]
testthat::expect_true(contr.var == "virus*median_cv_coverage")
testthat::expect_true(contrast.ref == "none")
testthat::expect_true(contrast.lvl == "HRV")
testthat::expect_equal(estimate.val, 3.5497, tolerance = 0.001)
}
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.