## Semantic network for anger and fear sadness---------------------
library(shinydashboard)
library(shiny)
library(reactable)
library(dplyr)
library(tidytext)
library(mallet)
library(rlist)
library(ggrepel)
library(mallet)
library(stopwords)
library(scales)
library(tidyr)
library(radarchart)
library(shinyjqui)
shiny_topic <- function(mallet_df, df){
require(shiny)
require(ggrepel)
theme_lyrics <- function(aticks = element_blank(),
pgminor = element_blank(),
lt = element_blank(),
lp = "none")
{
theme(plot.title = element_text(hjust = 0.5), #center the title
axis.ticks = aticks, #set axis ticks to on or off
panel.grid.minor = pgminor, #turn on or off the minor grid lines
legend.title = lt, #turn on or off the legend title
legend.position = lp) #turn on or off the legend
}
word_chart <- function(data, input, title) {
data %>%
#set y = 1 to just plot one variable and use word as the label
ggplot(aes(as.factor(row), 1, label = input, fill = factor(topic) )) +
#you want the words, not the points
geom_point(color = "transparent") +
#make sure the labels don't overlap
geom_label_repel(nudge_x = .2,
direction = "y",
box.padding = 0.1,
segment.color = "transparent",
size = 3) +
facet_grid(~topic) +
theme_lyrics() +
theme(axis.text.y = element_blank(), axis.text.x = element_blank(),
#axis.title.x = element_text(size = 9),
panel.grid = element_blank(), panel.background = element_blank(),
panel.border = element_rect("lightgray", fill = NA),
strip.text.x = element_text(size = 9)) +
labs(x = NULL, y = NULL, title = title) +
#xlab(NULL) + ylab(NULL) +
#ggtitle(title) +
coord_flip()
}
shinyApp(
ui = navbarPage(
sidebarLayout(
sidebarPanel(
#numericInput("n_topic", "Number K", 7, min = 2, max = 100),
numericInput("num_words", "Number Words", 10, min = 2, max = 50)),
mainPanel(
tabsetPanel(type = "tabs",
tabPanel("Topic words plot", jqui_resizable(plotOutput("topic_word"))),
tabPanel("Topic radar map", jqui_resizable(chartJSRadarOutput("topic_radar")))
)
)
)
),
server = function(input,output) {
top_terms <- reactive({
topic.words <- mallet.topic.words(mallet_df, smoothed = T, normalized = T)
mallet_words_list <- list()
for (i in 1:as.numeric(mallet_df$model$numTopics)) {
mallet_words_list[[i]] <- mallet.top.words(mallet_df, topic.words[i,], 100)
}
topic_mallet_list <- mallet_words_list
topic_word <- list.cbind(topic_mallet_list)
## top num_words words per topic
sort <- list()
for(i in 1:mallet_df$model$numTopics*2-1){
sort[[i]] <- c(i,i+1)
}
sort <- do.call(rbind,sort)
tt <- list()
for(i in 1:nrow(sort)){
tt[[i]] <- cbind(topic = paste("Topic", i), topic_word[,c(sort[i,])])
}
topics_tidy <- do.call(rbind.data.frame, tt)
top_terms <- topics_tidy %>%
group_by(topic) %>%
arrange(topic, desc(weights)) %>%
#get the top num_words PER topic
slice(seq_len(input$num_words)) %>%
arrange(topic, weights) %>%
#row is required for the word_chart() function
mutate(row = row_number()) %>%
ungroup()
return(top_terms)
})
title <- reactive({
paste("Mallet Top",input$num_words ,"Terms for",mallet_df$model$numTopics, "Topics")
})
output$topic_word <- renderPlot(
#call the word_chart function you built in prep work
word_chart(top_terms(), top_terms()$words, title())
)
year_topic <- reactive({
doc.topics.m <- mallet.doc.topics(mallet_df, smoothed=T,
normalized=T)
tmp_df <- df[rep(seq_len(nrow(df)), each = mallet_df$model$numTopics), ]
#tmp_df$topic <- paste("Topic", rep(1:n_topic, nrow(df)))
tt <- list()
for(i in 1:nrow(doc.topics.m)){
tt[[i]] <- doc.topics.m[i,]
}
tmp_df$prob <- unlist(tt)
tmp_df$topic <- paste("Topic", rep(1:mallet_df$model$numTopics, nrow(df)))
#tmp_df$created_at <- format(as.Date(tmp_df$created_at), "%Y")
tmp_df$created_at <- min(format(as.Date(tmp_df$created_at), "%Y"))
year_prob <- aggregate(x = tmp_df$prob, # Specify data column
by = list(tmp_df$topic, tmp_df$created_at), # Specify group indicator
FUN = sum)
year_topic <- tmp_df %>%
group_by(created_at, topic) %>%
count(created_at, topic) %>%
select(created_at, topic, year_topic_n = n)
year_topic$prob <- year_prob$x
year_topic$percent <- year_topic$prob / year_topic$year_topic_n *100
return(year_topic)
})
col <- reactive({
col2rgb(c("royalblue", "tomato", "#B4CF68", "green", "purple", "orange","grey","red","#8DD3C7" , "pink", "blue","gold"))
})
#Join the two and create a percent field
year_radar_chart <- reactive({
year_radar_chart <- year_topic() %>%
select(-year_topic_n, -prob) %>%
spread(created_at, percent)
return(year_radar_chart)
})
output$topic_radar <- renderChartJSRadar(
chartJSRadar(year_radar_chart(), showToolTipLabel = TRUE,
main = "Topic Radar", colMatrix =col())
)
}
)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.