#' Customization function of the summary method for the modele instance
#'
#' @param object model instance returned by dgrglm.fit function
#' @param ... other argument
#'
#' @importFrom stats addmargins
#' @export
#'
summary.modele <- function(object, ...){
modele<- object
cm <- table(modele$y_val$TrueY,modele$y_val$Ypredict)
names(dimnames(cm)) <- c("observed","predicted")
cm <- addmargins(cm)
error_rate <- ((cm[2,1]+cm[1,2])/cm[3,3])*100
accuracy <- 100-error_rate
recall <- (cm[2,2]/(cm[2,2]+cm[2,1]))*100
false_positive_rate <- (cm[1,2]/cm[1,3])*100
true_negative_rate <- (cm[1,1]/cm[1,3])*100
precision <- (cm[2,2]/cm[3,2])*100
f1_score <- (2*precision*recall)/(precision+recall)
cat("Confusion matrix:\n\n")
print(cm)
cat("\n\n")
cat("Error rate : ",error_rate,"%\n")
cat("Accuracy : ",accuracy,"%\n")
cat("Precision : ",precision,"%\n")
cat("Recall : ",recall,"%\n")
cat("F1-score : ",f1_score,"%\n")
cat("False positive rate :",false_positive_rate,"%\n")
cat("True negative rate :",true_negative_rate,"%\n\n")
cat("Log-likelihood model: ",modele$metric$LLmodel,"\n")
cat("Log-likelihood null model: ",modele$metric$LLnull,"\n")
cat("Null Deviance: ",modele$metric$nulldev," on ",nrow(modele$probas)-1," degrees of freedom","\n")
cat("Residual Deviance: ",modele$metric$resdev," on ",nrow(modele$probas)-length(modele$explicatives)-1," degrees of freedom","\n")
cat("AIC: ",modele$metric$aic)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.