R/stapreg.R

Defines functions assign_st_weight assign_weight .calculate_stap_X stapreg

Documented in stapreg

# Part of the rstap package for estimating model parameters
# 
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 3
# of the License, or (at your option) any later version.
# 
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
# 
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.

#' Create a stapreg object
#'
#' @param object A list provided by one of the \code{stap_*} modeling functions.
#' @return A stapreg object
#'
stapreg <- function(object){

    mer <- !is.null(object$glmod) # used stap_(g)lmer
    stapfit <- object$stapfit
    stap_data <- object$stap_data
    family <- object$family
    y <- object$y
    Z <- object$z
    nvars <- ncol(Z) + stap_data$Q_s*2 + stap_data $Q_t*2 + stap_data$Q_st*3  + 
      num_bar(stap_data) + num_s_wei(stap_data) + num_t_wei(stap_data)
    if(mer){
        nvars <- nvars + ncol(object$w)
    }
    nobs <- NROW(y)
    ynames <- if(is.matrix(y)) rownames(y) else names(y)
    stap_summary <- make_stap_summary(stapfit)
    coefs <- stap_summary[1:nvars, "50%"]
    stanmat <- as.matrix(stapfit)[,names(coefs), drop = F ]
    
    x <- array(rstan::extract(stapfit)$X,dim = c(nrow(stanmat),length(y),stap_data$Q))
    
    if(any_dnd(stap_data)){
      subj_n_diag <- diag(as.vector(object$subj_n))
      X_bar <- array(dim=dim(x))
      for(i in 1:object$stap_data$Q)
        X_bar[,,i] <- t(t(object$subj_matrix) %*% (subj_n_diag %*% (object$subj_matrix %*% t(x[,,i]) )))
      X_tilde <- x - X_bar
    }
    else
      X_tilde <- x
    
    
    colnames(stanmat) <- c(colnames(object$z),
                           coef_names(stap_data),
                           if(mer) colnames(object$w))
                           
    ses <- apply(stanmat, 2L, mad)
    if(mer){
        mark <- sum(sapply(object$stapfit@par_dims[c("alpha","delta",
                                                     "beta",
                                                     if(any_bar(stap_data)) "beta_bar",
                                                     "theta_s",
                                                     "shape_s",
                                                     "theta_t",
                                                     "shape_t")],prod))
        stanmat <- stanmat[,1:mark, drop = F]
    }
    covmat <- cov(stanmat)
    check_rhats(stap_summary[,"Rhat"])
    delta_beta <- coefs[grep("_scale|_shape|Sigma",names(coefs),invert=T)]
    


   #linear predictor, fitted values 
    design_mat <- cbind(Z,apply(X_tilde,c(2,3),median))
    if(any_bar(stap_data))
      design_mat <- cbind(design_mat,apply(X_bar,c(2,3),median))
    if(mer)
      design_mat <- cbind(design_mat,object$w)

    eta <- linear_predictor(delta_beta, NULL,design_mat,object$offset)
    mu <- family$linkinv(eta)


    if(NCOL(y) == 2L){
        # residuals of type 'response', (glm which does deviance residuals by default)
        residuals <- y[,1L]/ rowSums(y) - mu
    } else {
        ytmp <- if(is.factor(y)) fac2bin(y) else y
        residuals <- ytmp - mu
    }
    names(eta) <- names(mu) <- names(residuals) <- ynames
    

    out <- nlist(
        coefficients = coefs, 
        ses = ses,
        fitted.values = mu,
        linear.predictors = eta,
        residuals,
        covmat,
        y,
        x,
        z = Z,
        model = object$model,
        max_distance = object$max_distance,
        max_time = object$max_time,
        family,
        offset = if (any(object$offset != 0)) object$offset else NULL,
        weights = object$weights, 
        prior.weights = object$weights, 
        contrasts = object$contrasts, 
        na.action = object$na.action,
        formula = object$formula, 
        terms = object$terms,
        prior.info = attr(stapfit, "prior.info"),
        stap_summary,  
        stapfit = stapfit,
        stap_data = stap_data,
        rstan_version = utils::packageVersion("rstan"),
        call = object$call, 
        # sometimes 'call' is no good (e.g. if using do.call(stap_glm, args)) so
        # also include the name of the modeling function (for use when printing,
        # etc.)
        stan_function = object$stan_function
      )
    if(mer)
        out$glmod <- object$glmod

    structure(out, class = c("stapreg"))

}

.calculate_stap_X <- function(dists_crs, times_crs, u_s, u_t, scales,shapes = NULL, stap_data){

    n <- nrow(u_s)
    q <- stap_data$Q
    X <- array(NA,dim=c(nrow(scales), n, q))
    stap_code <- stap_data$stap_code
    sweight_code <- stap_data$weight_mats[,1]
    tweight_code <- stap_data$weight_mats[,2]
    

    cnt_s <- 1
    cnt_t <- 1
    cnt_shape <- 1
    scl_ix <- 1
    shapes_ <- if(is.null(shapes)) NULL else shapes[,cnt_shape]
    shapes__ <- if(!is.null(shapes) && dim(shapes)[2]>1) shapes[,cnt_shape+1] else NULL;
    for(q_ix in 1:q){
        for(n_ix in 1:n){
            if(stap_code[q_ix] == 0)
                X[,n_ix,q_ix] <- assign_weight(u_s, dists_crs[cnt_s,], scales[,scl_ix],shapes_ , stap_data$log_switch[q_ix], 
                                               sweight_code[q_ix],n_ix,cnt_s)
            else if(stap_code[q_ix] == 1)
                X[,n_ix,q_ix] <- assign_weight(u_t, times_crs[cnt_t,], scales[,scl_ix],shapes_, stap_data$log_switch[q_ix], 
                                               tweight_code[q_ix],n_ix,cnt_t)
            else{
                X[,n_ix,q_ix] <- assign_st_weight(u_s, u_t, dists_crs[cnt_s,], 
                                                  times_crs[cnt_t],
                                                  scales[,scl_ix],
                                                  shapes_,
                                                  scales[,scl_ix+1],
                                                  shapes__,
                                                  stap_data$log_switch[q_ix],
                                                  sweight_code[q_ix],
                                                  tweight_code[q_ix],
                                                  n_ix,cnt_s)
            }
        }
        if(stap_code[q_ix] == 2)
            scl_ix <- scl_ix + 1
        if(stap_code[q_ix] == 0 || stap_code[q_ix] == 2)
            cnt_s <- cnt_s + 1
        else if(stap_code[q_ix] == 1 || stap_code[q_ix] == 2)
            cnt_t <- cnt_t + 1
        if(q_ix+1 < q){
            if(sweight_code[q_ix+1]>4 || tweight_code[q_ix+1]>4){
                cnt_shape <- cnt_shape + 1
                shapes_ <- shapes[,cnt_shape]
            }
            if(stap_code[q_ix+1]>1)
                shapes__ <- shapes[,cnt_shape+1]
        }
   }
   return(X) 
}


assign_weight <- function(u, crs_data, scales, shapes = NULL, log_code, weight_code,n,q){

    w <- get_weight_function(weight_code)
    if(!is.null(shapes)){
        if(weight_code == 5)
            w <- function(x,y,z) { exp(-(x/y)^z)}
        else
            w <- function(x,y,z){ 1 - exp(-(x/y)^z)}
        out <- purrr::map2_dbl(scales,shapes, function(a,b) sum(w(crs_data[u[n,(q*2)-1]:u[n,(q*2)]],a,b)))
    }

    if(u[n,(q*2)-1]>u[n,(q *2)])
        return(0)
    else
        out <- sapply(scales, function(z) sum(w(crs_data[u[n,(q*2)-1]:u[n,(q*2)]],z )))
    if(log_code)
        return(log(out))
    else
        return(out)
}


assign_st_weight <- function(u_s, u_t, crs_dist, crs_time, scales_s,
                             shapes_s = NULL, scales_t, shapes_t = NULL,
                             log_code, weight_s, weight_t, n,q){

    if(u_s[n,(q*2)-1]>u_s[n,(q*2)])
        return(0)
    
    if(is.null(shapes_s))
        w_s <- function(x,y,z) { exp(-(x/y)^z)}
    else
        w_s <- get_weight_function(weight_s)
    if(is.null(shapes_t))
        w_t <- get_weight_function(weight_t)
    else
        w_t <- get_weight_function(weight_t)

    if(is.null(shapes_s) & is.null(shapes_t))
        out <- purrr::pmap_dbl(list(scales_s,scales_t,rep(NA,length(scales_t))),
                               function(z,w,u) sum(w_s(crs_dist[u_s[n,(q*2)-1]:u_s[n,(q*2)] ],z,NULL)*
                                                               w_t(crs_time[u_t[n,(q*2)-1]:u_t[n,(q*2)]],w,u)))
    else if(is.null(shapes_s) & !is.null(shapes_t))
        out <- purrr::pmap_dbl(list(scales_s,scales_t,shapes_t),
                               function(z,w,v){
                                   sum(w_s(crs_dist[u_s[n,(q*2)-1]:u_s[n,(q*2)] ],z,NULL)*
                                       w_t(crs_time[u_t[n,(q*2)-1]:u_t[n,(q*2)]],w,v))})
    else if(!is.null(shapes_s) & is.null(shapes_t))
        out <- purrr::pmap_dbl(list(scales_s,scales_t,shapes_s),
                               function(z,w,v){
                                   sum(w_s(crs_dist[u_s[n,(q*2)-1]:u_s[n,(q*2)] ],z,v)*
                                       w_t(crs_time[u_t[n,(q*2)-1]:u_t[n,(q*2)]],w,NULL))})
    else
        out <- purrr::pmap_dbl(list(scales_s,shapes_s,scales_t,shapes_t),
                               function(z,u,w,v){
                                   sum(w_s(crs_dist[u_s[n,(q*2)-1]:u_s[n,(q*2)] ],z,u)*
                                       w_t(crs_time[u_t[n,(q*2)-1]:u_t[n,(q*2)]],w,v))})

    
    if(log_code)
        return(log(out))
    else
        return(out)
}
Biostatistics4SocialImpact/rstap documentation built on Aug. 13, 2019, 7:43 p.m.