R/twoStageLCA.R

Defines functions twoStageLCA

Documented in twoStageLCA

#' Two-staged Linked Component Analysis
#'
#' Two-staged Linked Component Analysis
#'
#' @param dataset A list of dataset to be analyzed
#' @param group A list of grouping of the datasets, indicating the relationship between datasets
#' @param comp_num A vector indicates the dimension of each compoent
#' @param weighting Weighting of each dataset, initialized to be NULL
#' @param backup A positive scalar to determine how many PCs to over select
#' @param plotting A boolean value to determine whether to plot the scree plot or not, default to be False
#' @param proj_dataset The datasets to be projected on
#' @param proj_group The grouping of projected data sets
#' @param enable_normalization An argument to decide whether to use normalizaiton or not,  default is TRUE
#'
#' @importFrom RSpectra svds
#'
#' @return A list contains the component and the score of each dataset on every component after 2sLCA algorithm
#'
#' @keywords two-staged, LCA
#'
#' @examples
#' dataset = list(matrix(runif(5000, 1, 2), nrow = 100, ncol = 50),
#' matrix(runif(5000, 1, 2), nrow = 100, ncol = 50),
#' matrix(runif(5000, 1, 2), nrow = 100, ncol = 50),
#' matrix(runif(5000, 1, 2), nrow = 100, ncol = 50))
#' group = list(c(1, 2, 3, 4), c(1, 2), c(3, 4), c(1, 3), c(2, 4), c(1), c(2), c(3), c(4))
#' comp_num = c(2, 2, 2, 2, 2, 2, 2, 2, 2)
#' proj_dataset = list(matrix(runif(5000, 1, 2), nrow = 100, ncol = 50))
#' proj_group = list(c(TRUE, TRUE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE))
#' res_twoStageLCA = twoStageLCA(dataset, group, comp_num, proj_dataset = proj_dataset, proj_group = proj_group)
#'
#' @export


twoStageLCA <- function(dataset, group, comp_num, weighting = NULL, backup = 0, plotting = FALSE, proj_dataset = NULL, proj_group = NULL, enable_normalization = TRUE){

    ## Obtain names for dataset, gene and samples
    dataset_name = datasetNameExtractor(dataset)
    gene_name = geneNameExtractor(dataset)
    sample_name = sampleNameExtractor(dataset)
    group_name = groupNameExtractor(group)

    dataset = frameToMatrix(dataset)

    dataset = normalizeData(dataset, enable_normalization)


    ## Parameters to be initialized
    N = length(dataset)
    K = length(group)
    M = sum(comp_num)
    p = nrow(dataset[[1]])
    N_dataset = unlist(lapply(dataset, ncol))

    ## Output the component and scores
    list_component = list()
    list_score = list()
    for(j in 1 : N){
        list_score[[j]] = list()
    }

    for(i in 1 : K){
        list_component[[i]] = matrix(0, nrow = p, ncol = comp_num[i])
        for(j in 1 : N){
            list_score[[j]][[i]] = matrix(0, nrow = comp_num[i], ncol = N_dataset[j])
        }
    }

    ## compute the total number of component each dataset has
    data_comp_num = rep(0, N)
    for(i in 1 : K){
        for(j in group[[i]]){
            data_comp_num[j] = data_comp_num[j] + comp_num[i] + backup
        }
    }

    ## compute the component for each dataset
    data_comp_total = list()
    for(i in 1 : N){
        data_comp_total[[i]] = svds(dataset[[i]], data_comp_num[i])$u
    }

    data_comp_total = weightData(data_comp_total, weighting)

    ## compute the components sequentially
    for(i in 1 : K){
        temp_comp = c()
        for(j in group[[i]]){
            temp_comp = cbind(temp_comp, data_comp_total[[j]])
        }
        ## Orthogonalize the component
        if(i >= 2){
            for(j in 1 : (i - 1)){
                temp_comp = temp_comp - list_component[[j]] %*% (t(list_component[[j]]) %*% temp_comp)
            }
        }

        temp_comp_svd = svds(temp_comp, comp_num[i])
        # print(svd(temp_comp)$d^2)
        if(plotting){
            plot(svd(temp_comp)$d^2, xlab = "index of eigenvalue", ylab = "eigenvalue", main = paste0("Group of Dataset: ", toString(group[[i]])), type = "o")
        }
        list_component[[i]] = temp_comp_svd$u

        # ## Orthogonalize the component
        # if(i >= 2){
        #     for(j in 1 : (i - 1)){
        #         list_component[[i]] = list_component[[i]] - list_component[[j]] %*% (t(list_component[[j]]) %*% list_component[[i]])
        #     }
        # }

        ## Project the extracted space onto orthogonal space
        # for(j in group[[i]]){
        for(j in 1 : N){
            data_comp_total[[j]] = data_comp_total[[j]] - list_component[[i]] %*% (t(list_component[[i]]) %*% data_comp_total[[j]])
            # data_comp_total[[j]] = svd(data_comp_total[[j]])$u[, 1 : (ncol(data_comp_total[[j]]) - comp_num[i])]
        }
    }

    ## compute the score for each dataset
    for(i in 1 : K){
        for(j in 1 : N){
            if (j %in% group[[i]]){
                list_score[[j]][[i]] = t(list_component[[i]]) %*% dataset[[j]]
            }
        }
    }

    ## Assign name for components
    list_component = compNameAssign(list_component, group_name)
    list_component = geneNameAssign(list_component, gene_name)
    list_score = scoreNameAssign(list_score, dataset_name, group_name)
    list_score = sampleNameAssign(list_score, sample_name)
    list_score = filterNAValue(list_score, dataset, group)
    list_score = pveMultiple(dataset, group, comp_num, list_score, list_component)

    ## Project score
    proj_list_score = list()
    if(!is.null(proj_dataset)){
        proj_sample_name = sampleNameExtractor(proj_dataset)
        proj_dataset_name = datasetNameExtractor(proj_dataset)

        proj_dataset = frameToMatrix(proj_dataset)
        proj_dataset = normalizeData(proj_dataset)
        proj_dataset = balanceData(proj_dataset)

        for(i in 1 : length(proj_dataset)){
            proj_list_score[[i]] = list()
            for(j in 1 : length(proj_group[[i]])){
                if(proj_group[[i]][j]){
                    proj_list_score[[i]][[j]] =  t(list_component[[j]]) %*% proj_dataset[[i]]
                }else{
                    proj_list_score[[i]][[j]] = NA
                }
            }
        }


        proj_list_score = scoreNameAssign(proj_list_score, proj_dataset_name, group_name)
        proj_list_score = sampleNameAssign(proj_list_score, proj_sample_name)
    }

    return(list(linked_component_list = list_component, score_list = list_score, proj_score_list = proj_list_score))
}
CHuanSite/PJD documentation built on Oct. 26, 2021, 1 p.m.