#' Simulate Longitudinal Continuous Data
#'
#'
#' This is from the SPR package
#'
#' Requires MASS R package
#' @param reg.formula this is a regression formula to pass to the data generation; null is
#' formula(~ Group + Time + Time*Group),
#' @param Beta this is the Beta for the regression equation; numeric matrix of Beta values OR a scalar value != 0
#' that will be the final value of the interaction parameters, default is all(Beta == 0) for Type I error simulations
#' @param corr options for correlation structure c('ind', 'ar1', 'cs'), default is 'ar1'
#' @param cor.value numeric, the first corr in ar1, the corr in cs option
#' @param var.values numeric vector of variances, Default variance value at last timepoint is 2.
#' Can either adjust that last value (rest will be filled in automatically) OR you can pass the full vector
#' @param cond.mcar logical; do you want a conditional MCAR data generation
#' @param Covariate logical; do you want a random simulated covariate?
#'
#' @return returns a dataframe containing the simulated data
#' @export
sim_dat <- function(N = 100 ,
number.groups = 2,
number.timepoints = 4,
reg.formula = NULL,
Beta = 0,
corr = 'ar1',
cor.value = NULL,
var.values = 2,
cond.mcar = F,
Covariate = F
){
# checks:
# if (!is.null(var.values) & length(var.values != number.timepoints)) stop('variance values not equal to number of timepoints')
if (is.null(reg.formula) & cond.mcar == F) { reg.formula <- formula(~ Group + Time + Time*Group) }
if (!is.null(reg.formula) & cond.mcar == T) {
if (all(!grepl('Covariate', paste0(reg.formula)))) stop('cannot pass a regression formula without the covariate in it if you want to generate conditional mcar')
}
#------------------------------------------------------------------------------------------------------------------
dat <- data.frame(
'USUBJID' = rep(paste0('Subject_', formatC(1:N, width = 4, flag = '0')), length.out= N*number.timepoints),
'Group' = rep(paste0('Group_', 1:number.groups), length.out = N*number.timepoints),
'Time' = rep(paste0('Time_', 1:number.timepoints), each = N),
'Y_comp' = rep(NA, N*number.timepoints),
stringsAsFactors=F)
# Biomarker:
if (Covariate == T) {
dat$Covariate <- rnorm(N*number.timepoints, mean = 0, sd= 1) # No differences in Biomarker across Groups
# Note: This is similar to having randomized Biomarker levels across arms in a RCT
}
# Beta parameter default is zero - permits Type I error simulations
if (cond.mcar == F) {
# Design Matrix
X <- model.matrix( reg.formula, data = dat)
if (length(Beta) == 1) {
if (Beta == 0) {
Beta <- matrix(0, nrow = ncol(X), dimnames=list(colnames(X), 'param'))
} else {
# If pass scalar, then that is the value of the final interaction parameter
beta.values <- seq(0.25, Beta, length.out = number.timepoints - 1)
Beta <- matrix(0, nrow = ncol(X), dimnames=list(colnames(X), 'param'))
Beta[grepl('Group_2', rownames(Beta)) & grepl('Time', rownames(Beta)), ] <- beta.values
}
}
}
if (cond.mcar == T) {
# Generate Biomarker:
dat$Covariate <- rnorm(N*number.timepoints, mean = 1*(dat$Group == 'Group_2'), sd= 1) # Biomarker differs across Groups
# Design Matrix - Condition MCAR
reg.formula <- formula(~ Group + Time + Covariate + Time*Group + Covariate*Time)
X <- model.matrix( reg.formula, data = dat) # include Biomarker drop-out!
# Conditional MCAR - biomarker affects Y
beta.values <- seq(0.25, Beta, length.out = number.timepoints - 1)
Beta <- matrix(0, nrow = ncol(X), dimnames=list(colnames(X), 'param'))
Beta[grepl('Covariate', rownames(Beta)) & grepl('Time', rownames(Beta)), ] <- -0.5*beta.values
Beta[grepl('Group_2', rownames(Beta)) & grepl('Time', rownames(Beta)), ] <- beta.values
}
# Matrix multiply:
XB <- X %*% Beta
dat$XB <- as.vector(XB)
# -------------------------------------------------------------------
# DISTRIBUTION OF RESIDUALS
#
if (corr == 'ind') {
cor.mat <- diag(1, nrow = number.timepoints, ncol = number.timepoints)
}# end independent structure
if (corr == 'cs') {
if (is.null(cor.value)) { cor.value <- 0.4 }
cor.mat <- matrix(cor.value, nrow = number.timepoints, ncol = number.timepoints)
diag(cor.mat) <- 1
} # end Compound Symmetry correlation
if (corr == 'ar1') {
if (is.null(cor.value)) { cor.value <- 0.8 }
cor.mat <- diag(1, nrow = number.timepoints, ncol = number.timepoints)
for (i in 1:number.timepoints) {
for (j in 1:i) {
cor.mat[i , j] <- cor.value^(i -j) # AR1
cor.mat[j, i] <- cor.mat[i, j]
}
}
}# end exponential decay correlations
# Variances
# if (is.null(var.values)) {
#
# var.values <- seq(1, 2, length.out = number.timepoints)
#
# }
# Default variance value at last timepoint is 2
# Can either adjust that last value (rest will be filled in automatically)
# OR you can pass the full vector
if (length(var.values) == 1) {
var.values <- seq(1, var.values, length.out = number.timepoints)
} else {
if (length(var.values) != number.timepoints) stop('Vector of variance values does not equal number of timepoints')
}
# Variance- Covariance Matrix:
var.mat <- diag(sqrt(var.values), nrow = number.timepoints, ncol = number.timepoints)
sigma <- var.mat %*% cor.mat %*% var.mat
#--------------------------------------------------------------------------------
# Fixed 4.8.21
# Simulate the errors:
error <- MASS:::mvrnorm(n = N, mu = rep(0, number.timepoints), Sigma = sigma)
colnames(error) <- unique(dat$Time)
# Associate errors with the correct XB to create correct Y for each subject
dat$error <- NA
for (tt in unique(dat$Time)) {
dat$error[which(dat$Time == tt)] <- error[, tt, drop = T]
}
dat$Y_comp <- as.vector(dat$XB + dat$error)
# # Simulate the errors:
# mu <- rep(0, number.timepoints)
# error <- MASS:::mvrnorm(n = N, mu = mu, Sigma = sigma)
# # Re-arrange in long format:
# error.long <- vector()
# for(time in 1:number.timepoints){
# error.long <- rbind(error.long,
# error[, time, drop = F]
# )
# }
#
# Y <- XB + error.long
# dat$Y_comp <- as.vector(Y)
out <- list('dat' = dat,
'reg.formula' = reg.formula,
'Beta' = Beta,
'sigma' = sigma,
'cor.mat' = cor.mat,
'var.values' = var.values
)
return(out)
}## End
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.