triangleImage: Comparison of the Habitat Use by the Roe Deer Between two...

Description Usage Arguments Value Author(s) Examples

Description

The functions presented on this help page have been used to compare the habitat use between two sites (figure 5 of the paper). The function triangleImage can be used to display an image in the ecological triangle. The function triangleGrid can be used to generate such an image. We describe in the Examples section how we used these two functions to generate the figure 5 of the paper.

Usage

1
2
3
4
5
6
7
8
triangleImage(pred, gr, names=c("A","B","C"), 
              cuts = c(-0.1, 0.05, 0.15, 0.5, 0.85, 0.95, 1.1),
              col = c("lightgrey", "darkgrey","darkgrey","darkgrey",
                      "darkgrey","black"),
              listlim = NULL,
              lowerleft=c(1,0,0), lowerright=c(0,1,0), top=c(0,0,1))

triangleGrid(ngrid=150)

Arguments

pred

a vector of N values to be plotted

gr

a N x 2 matrix containing the pairs of Cartesian coordinates on the ecological triangle, corresponding to the N values stored in pred.

names

The names of the three habitat types.

cuts

a numeric vector containing the B+1 breaks used to define the colors.

col

a character vector containing the names of the B colors corresponding to the B classes defined by cuts.

listlim

Optionally, a list with two elements named xlim and ylim describing the x and y limits of the image to be plotted on the triangle.

lowerleft

A vector of length 3 describing the habitat proportions corresponding to the lower left corner of the triangle.

lowerright

A vector of length 3 describing the habitat proportions corresponding to the lower right corner of the triangle.

top

A vector of length 3 describing the habitat proportions corresponding to the top corner of the triangle.

ngrid

An integer value controling the resolution of the grid generated on the ecological triangle.

Value

The function triangleGrid returns a list with two elements named triangle and proportions containing respectively a matrix containing the pairs of Cartesian coordinates of the grid in the triangle and a matrix containing the corresponding vectors of three habitat proportions.

The function triangleImage returns invisibly an object of class spatialPixelsDataFrame containing the gridded values within the limits specified by listlim, lowerleft, lowerright and top.

Author(s)

William Gaudry, Clement Calenge, Sonia Said, Jean-Michel Gaillard

Examples

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
## In these examples, we describe how we built the figure 5.

######################################################
##
## 1. Load the data and fit the model

## We load the data used for the fit:
data(HS3sites)

## We remove the information concerning the meadows
## (negligible, see the paper)
HS3sites$locs$meadows <- NULL
HS3sites$hr$meadows <- NULL

## Calculates the total number of relocations
HS3sites$N <- apply(HS3sites$locs,1,sum)

## stores the number of animals
HS3sites$J <- nrow(HS3sites$locs)

## keeps the home-range information in another object
availhr <- HS3sites$hr

## For a better mixing, we scale the covariates
HS3sites$hr <- scale(HS3sites$hr)
mo <- attr(HS3sites$hr,"scaled:center")
sc <- attr(HS3sites$hr,"scaled:scale")

## We have described in the example section of the help
## page of the dataset coefficientsModel2 how to fit the model.
## We just load the dataset:
data(coefficientsModel2)

## Not run: 
####################################################
##
## 2. We generate a grid of values in the ecological triangle 

tr <- triangleGrid()
pp <- tr$proportions
gr <- tr$triangle


####################################################
##
## 3. We predict, for each possible habitat availability stored in tr
##    and gr, the posterior distribution of the log-ratios between
##    habitat use in a site and in another

## Remember that we centered and scaled the availability proportions
## to improve mixing of the MCMC. We center and scale the proportions
## for prediction. Also, pp is designed for representation purposes
## (with scrubs as the horisontal axis), whereas d is for calculation:
d <- pp[,c(2,3,1)]
d <- t(apply(d,1,function(x) (x-mo)/sc))

## We bind the 3 chains
coef2 <- do.call(rbind, coefficientsModel2)

## We work with 1000 random vectors of parameters sampled from the
## posterior.
set.seed(98)
sampledvectors <- sample(1:nrow(cor2), 1000)

## For each parameter vector, we predict the mean of log-ratios between
## pairs of sites for all possible available proportions.
## WARNING!!!! Very slow loop!
lpr <- lapply(1:1000, function(samp) {

    ## progress bar
    cat(round(100*samp/1000),"\r")

    ## Prediction of the use in site 1
    i <- sampledvectors[samp]
    site <- rep(1,nrow(d))
    logp1 <- coef2[i,paste("a0f[",site,"]",sep="")] +
        coef2[i,paste("aff[",site,"]",sep="")]*d[,1] +
            coef2[i,paste("afp[",site,"]",sep="")]*d[,2]
    logp2 <- coef2[i,paste("a0p[",site,"]",sep="")] +
        coef2[i,paste("apf[",site,"]",sep="")]*d[,1] +
            coef2[i,paste("app[",site,"]",sep="")]*d[,2]
    p1 <- exp(logp1)/(1+exp(logp1)+exp(logp2))
    p2 <- exp(logp2)/(1+exp(logp1)+exp(logp2))
    p3 <- 1/(1+exp(logp1)+exp(logp2))
    p11 <- p1
    p21 <- p2
    p31 <- p3

    ## Prediction of the use in site 2
    site <- rep(2,nrow(d))
    logp1 <- coef2[i,paste("a0f[",site,"]",sep="")] +
        coef2[i,paste("aff[",site,"]",sep="")]*d[,1] +
            coef2[i,paste("afp[",site,"]",sep="")]*d[,2]
    logp2 <- coef2[i,paste("a0p[",site,"]",sep="")] +
        coef2[i,paste("apf[",site,"]",sep="")]*d[,1] +
    coef2[i,paste("app[",site,"]",sep="")]*d[,2]
    p1 <- exp(logp1)/(1+exp(logp1)+exp(logp2))
    p2 <- exp(logp2)/(1+exp(logp1)+exp(logp2))
    p3 <- 1/(1+exp(logp1)+exp(logp2))
    p12 <- p1
    p22 <- p2
    p32 <- p3

    ## Prediction of the use in site 3
    site <- rep(3,nrow(d))
    logp1 <- coef2[i,paste("a0f[",site,"]",sep="")] +
        coef2[i,paste("aff[",site,"]",sep="")]*d[,1] +
            coef2[i,paste("afp[",site,"]",sep="")]*d[,2]
    logp2 <- coef2[i,paste("a0p[",site,"]",sep="")] +
        coef2[i,paste("apf[",site,"]",sep="")]*d[,1] +
            coef2[i,paste("app[",site,"]",sep="")]*d[,2]
    p1 <- exp(logp1)/(1+exp(logp1)+exp(logp2))
    p2 <- exp(logp2)/(1+exp(logp1)+exp(logp2))
    p3 <- 1/(1+exp(logp1)+exp(logp2))
    p13 <- p1
    p23 <- p2
    p33 <- p3

    ## return the matrix of the predicted mean log-ratios.
    return(cbind(log(p11/p12), log(p21/p22), log(p31/p32),
                 log(p12/p13), log(p22/p23), log(p32/p33),
                 log(p13/p11), log(p23/p21), log(p33/p31)))
})


####################################################
##
## 4. We predict, for each possible habitat availability stored in tr
##    and gr, the probability that the log-ratios between
##    habitat use in a site and in another is greater than 0


gg <- do.call("cbind", lapply(1:ncol(lpr[[1]]), function(i) {
    aa <- do.call("cbind",lapply(1:length(lpr), function(k) {
        lpr[[k]][,i]
    }))
    apply(aa,1,function(x) mean(x>0))
}))



####################################################
##
## 5. We plot the results using triangleImage


## Several elements required for the plot
namesa <- c("Chizé","LPP","TF")
nameshab <- c("Scrubs","pole","CWS")
labels1 <- apply(expand.grid(nameshab,
                             namesa)[,2:1],1,
                 function(x) paste(x, collapse="-"))


## The range of available conditions available in the two sites of a
## pair
availhr <- availhr[,c(3,1,2)] ## we reordered the columns, as we found
## clearer to present the scrubs as the horizontal side
di <- availhr[HS3sites$site==1,]
predd <- t(apply(di,1,ptoxy))
poly1 <- list(xlim=range(predd[,1]), ylim=range(predd[,2]))
di <- availhr[HS3sites$site==2,]
predd <- t(apply(di,1,ptoxy))
poly2 <- list(xlim=range(predd[,1]), ylim=range(predd[,2]))
poly2$xlim <- poly1$xlim
di <- availhr[HS3sites$site==3,]
predd <- t(apply(di,1,ptoxy))
poly3 <- list(xlim=range(predd[,1]), ylim=range(predd[,2]))
poly3$xlim <- poly1$xlim


## preparation of the image layout
mat <- rbind(c(1,2,2,2,2,3,3,3,3,4,4,4,4),
             c(5,6,6,6,6,7,7,7,7,8,8,8,8),
             c(5,6,6,6,6,7,7,7,7,8,8,8,8),
             c(5,6,6,6,6,7,7,7,7,8,8,8,8),
             c(5,6,6,6,6,7,7,7,7,8,8,8,8),
             c(9,10,10,10,10,11,11,11,11,12,12,12,12),
             c(9,10,10,10,10,11,11,11,11,12,12,12,12),
             c(9,10,10,10,10,11,11,11,11,12,12,12,12),
             c(9,10,10,10,10,11,11,11,11,12,12,12,12),
             c(13,14,14,14,14,15,15,15,15,16,16,16,16),
             c(13,14,14,14,14,15,15,15,15,16,16,16,16),
             c(13,14,14,14,14,15,15,15,15,16,16,16,16),
             c(13,14,14,14,14,15,15,15,15,16,16,16,16))
lay <- layout(mat)


## Top row of graphs = titles
par(mar = c(0.1,0.1,0.1,0.1))
plot(0,0, asp=1, ty="n", xlim = c(0,1), ylim = c(0,1), axes=FALSE)
par(mar = c(0.1,0.1,0.1,0.1))
plot(0,0, asp=1, ty="n", xlim = c(0,1), ylim = c(0,1), axes=FALSE)
text(0.5,0.5,"Scrubs", cex=1.5, font=2)
box()
par(mar = c(0.1,0.1,0.1,0.1))
plot(0,0, asp=1, ty="n", xlim = c(0,1), ylim = c(0,1), axes=FALSE)
text(0.5,0.5,"Pole Stage", cex=1.5, font=2)
box()
par(mar = c(0.1,0.1,0.1,0.1))
plot(0,0, asp=1, ty="n", xlim = c(0,1), ylim = c(0,1), axes=FALSE)
text(0.5,0.5,"CWS", cex=1.5, font=2)
box()

## Second row of graphs
par(mar = c(0.1,0.1,0.1,0.1))
plot(0,0, asp=1, ty="n", xlim = c(0,1), ylim = c(0,1), axes=FALSE)
text(0.5,0.5,"Chizé/LPP", cex=1.5, font=2, srt=90)
box()
triangleImage(gg[,1], gr, listlim=poly1, names=c("CWS","scrubs","pole"),
              lowerleft=c(1,0,0), lowerright=c(0.3,0.7,0), top=c(0.3,0,0.7))
triangleImage(gg[,2], gr, listlim=poly1, names=c("CWS","scrubs","pole"),
              lowerleft=c(1,0,0), lowerright=c(0.3,0.7,0), top=c(0.3,0,0.7))
triangleImage(gg[,3], gr, listlim=poly1, names=c("CWS","scrubs","pole"),
              lowerleft=c(1,0,0), lowerright=c(0.3,0.7,0), top=c(0.3,0,0.7))

## Third row of graphs
par(mar = c(0.1,0.1,0.1,0.1))
plot(0,0, asp=1, ty="n", xlim = c(0,1), ylim = c(0,1), axes=FALSE)
text(0.5,0.5,"LPP/TF", cex=1.5, font=2, srt=90)
box()
triangleImage(gg[,4], gr, listlim=poly3, names=c("CWS","scrubs","pole"),
              lowerleft=c(1,0,0), lowerright=c(0.3,0.7,0), top=c(0.3,0,0.7))
triangleImage(gg[,5], gr, listlim=poly3, names=c("CWS","scrubs","pole"),
              lowerleft=c(1,0,0), lowerright=c(0.3,0.7,0), top=c(0.3,0,0.7))
triangleImage(gg[,6], gr, listlim=poly3, names=c("CWS","scrubs","pole"),
              lowerleft=c(1,0,0), lowerright=c(0.3,0.7,0), top=c(0.3,0,0.7))

## Last row of graphs
par(mar = c(0.1,0.1,0.1,0.1))
plot(0,0, asp=1, ty="n", xlim = c(0,1), ylim = c(0,1), axes=FALSE)
text(0.5,0.5,"TF/Chizé", cex=1.5, font=2, srt=90)
box()
triangleImage(gg[,7], gr, listlim=poly1, names=c("CWS","scrubs","pole"),
              lowerleft=c(1,0,0), lowerright=c(0.3,0.7,0), top=c(0.3,0,0.7))
triangleImage(gg[,8], gr, listlim=poly1, names=c("CWS","scrubs","pole"),
              lowerleft=c(1,0,0), lowerright=c(0.3,0.7,0), top=c(0.3,0,0.7))
triangleImage(gg[,9], gr, listlim=poly1, names=c("CWS","scrubs","pole"),
              lowerleft=c(1,0,0), lowerright=c(0.3,0.7,0), top=c(0.3,0,0.7))


## End(Not run)

ClementCalenge/roedeer3sites documentation built on May 16, 2019, 6:58 p.m.