scratch/adapt_paper_runs4_addtruegrad.R

# Created 5/13/19.
# After rejected by Technometrics.
# Want to see what results would be when using true gradient.
# This has new functions where ours should be better.
# Still need to load objects from adapt_paper_runs3.R for making plots.

# In order, these are
# 1. sFFLHD (nonadapt)
# 2. Sobol (nonadapt)
# 3. ALC (no weighting)
# 4. grad mean
# 5. IMVSE
# 6. VSMED
# 7. max VSE at point, not over surface

objs <- c("nonadapt","nonadapt","desirability","desirability",
          "desirability", "desirability", "desirability")
selection_methods <- c("nonadapt","nonadapt", 'ALC_all_best',
                       'max_des_red_all_best', 'max_des_red_all_best',
                       'SMED', 'max_des_all_best')
designs <- c('sFFLHD_Lflex', "sobol", 'sFFLHD_Lflex', 'sFFLHD_Lflex', 'sFFLHD_Lflex',
             'sFFLHD_Lflex', 'sFFLHD_Lflex')
des_funcs <- c('des_func_grad_norm2_mean','des_func_grad_norm2_mean',
               'des_func_grad_norm2_mean','des_func_mean_grad_norm2',
               'des_func_grad_norm2_mean','des_func_grad_norm2_mean',
               'des_func_grad_norm2_mean')


if (F) {
  source('.//compare_adaptconceptR6.R')
  require('ggplot2'); require('dplyr'); require('magrittr')
}
library(TestFunctions)

run_test <- function(funcstring, reps, batches, D, L, stage1batches,
                     use_parallel=TRUE,
                     seed_start, design_seed_start, startover=FALSE) {
  # print("c1 doesn't exist, creating new")
  if (Sys.info()['sysname'] == "Windows") {
    parallel_cores <- 'detect-1'
  } else {
    which_matches <- which(substr(commandArgs(),1,18) == "number_of_threads=")
    if (length(which_matches) == 1) {
      parallel_cores <- as.integer(substr(commandArgs()[which_matches], 19, 21))
      cat("Found number of cores = ", parallel_cores, '\n')
    } else {
      parallel_cores <- 1
      cat("Didn't find number of cores to use, setting to 1\n")
    }
  }
  # Test that func and des func match
  if (test_des_func_grad_norm2_mean(get(funcstring),
                                    get(paste0('actual_des_func_grad_norm2_mean_', funcstring)),
                                    D) < .99) {
    stop(paste("actual_des_func_grad_norm2_mean doesn't match for ", funcstring))
  }
  c1 <- compare.adaptR6$new(func=funcstring, reps=reps, batches=batches, D=D, L=L,
                            n0=0, stage1batches=stage1batches,
                            obj=c(objs, "desirability"),
                            selection_method=c(selection_methods, "max_des_red_all_best"),
                            design=c(designs, "sFFLHD_Lflex"),
                            des_func=c(des_funcs,
                                       paste0('actual_des_func_grad_norm2_mean_', funcstring)
                            ), # HERE is key, add true one
                            actual_des_func=paste0('actual_des_func_grad_norm2_mean_', funcstring),
                            alpha_des=1, weight_const=0,
                            package="laGP_GauPro_kernel",
                            error_power=2,
                            seed_start=seed_start, design_seed_start=design_seed_start,
                            parallel=use_parallel, # always do parallel for temp_save
                            parallel_cores=parallel_cores, save_output=FALSE
  )
  # Check if already saved
  c1_file <- paste0(c1$folder_path, "//object.rds")
  if (file.exists(c1_file) && !startover) { # Load if saved, and recover
    print("c1 already exists, loading")
    c1 <- readRDS(c1_file)
    c1$recover_parallel_temp_save(save_if_any_recovered=TRUE)
  } else { # Otherwise create new
    # Now it is created above and overwritten if not used
    c1$recover_parallel_temp_save(save_if_any_recovered=TRUE)
  }
  # Run all, save temps
  print("Running all c1")
  already_run <- sum(c1$completed_runs)
  if (use_parallel) {
    c1$run_all(parallel_temp_save=TRUE, noplot=TRUE, run_order="reverse")
  } else {
    # For not parallel
    while (TRUE) {
      try(c1$run_one(noplot=TRUE))
      c1$save_self()
      print(table(c1$completed_runs))
      if (all(c1$completed_runs == TRUE)) {break}
    }
  }
  print("Finished c1, saving")
  if (sum(c1$completed_runs) > already_run) {c1$save_self()}
  return(c1)
}

Group.names <- c("obj=nonadapt,selection_method=nonadapt,design=sFFLHD_Lflex,des_func=des_func_grad_norm2_mean",
                 "obj=nonadapt,selection_method=nonadapt,design=sobol,des_func=des_func_grad_norm2_mean",
                 "obj=desirability,selection_method=ALC_all_best,design=sFFLHD_Lflex,des_func=des_func_grad_norm2_mean",
                 "obj=desirability,selection_method=max_des_red_all_best,design=sFFLHD_Lflex,des_func=des_func_mean_grad_norm2",
                 "obj=desirability,selection_method=max_des_red_all_best,design=sFFLHD_Lflex,des_func=des_func_grad_norm2_mean",
                 "obj=desirability,selection_method=SMED,design=sFFLHD_Lflex,des_func=des_func_grad_norm2_mean",
                 "obj=desirability,selection_method=max_des_all_best,design=sFFLHD_Lflex,des_func=des_func_grad_norm2_mean",
                 "obj=desirability,selection_method=max_des_red_all_best,design=sFFLHD_Lflex,des_func=actual_des_func_grad_norm2_mean_branin"
)
Group.names.clean <- c("sFFLHD", "Sobol", "ALC", "GradMean", "IMVSE", "VSMED", "MaxVal", "TrueGrad")
names(Group.names.clean) <- Group.names
# reps <- 10

if (F) {
  reps <- 10
  bran1   <- try(run_test(funcstring='branin',      D=2,  L=2, batches=4*10, reps=reps,
                          stage1batches=3, seed_start=1001000, design_seed_start=1011000))
  franke1 <- try(run_test(funcstring='franke',      D=2,  L=2, batches=4*10, reps=reps,
                          stage1batches=3, seed_start=1002000, design_seed_start=1012000))
  lim1    <- try(run_test(funcstring='limnonpoly',  D=2,  L=2, batches=4*10, reps=reps,
                          stage1batches=3, seed_start=1003000, design_seed_start=1013000))
  beam1   <- try(run_test(funcstring='beambending', D=3,  L=3, batches=4*10, reps=reps,
                          stage1batches=3, seed_start=1004000, design_seed_start=1014000))
  otl1    <- try(run_test(funcstring='OTL_Circuit', D=6,  L=4, batches=4*15, reps=reps,
                          stage1batches=4, seed_start=1005000, design_seed_start=1015000))
  piston1 <- try(run_test(funcstring='piston',      D=7,  L=5, batches=4*14, reps=reps,
                          stage1batches=4, seed_start=1006000, design_seed_start=1016000));print("cut batches in half")
  bh1     <- try(run_test(funcstring='borehole',    D=8,  L=5, batches=4*16, reps=reps,
                          stage1batches=5, seed_start=1007000, design_seed_start=1017000))
  wing1   <- try(run_test(funcstring='wingweight',  D=10, L=5, batches=4*20, reps=reps,
                          stage1batches=6, seed_start=1008000, design_seed_start=1018000))

}

# Look at results
if (F) {
  bran1$outrawdf$Method <- Group.names.clean[bran1$outrawdf$Group]
  ggplot(data=bran1$outrawdf, mapping=aes(n, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10()
  ggplot(data=bran1$outrawdf %>% filter(n %in% c(20,40)), mapping=aes(des_func, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10() + facet_wrap(. ~ n)
  ggplot(data=bran1$outrawdf %>% filter(n %in% c(20,40)), mapping=aes(Method, actual_intwerror, color=des_func)) + geom_point(size=5) + scale_y_log10() + facet_wrap(. ~ n)

  franke1$outrawdf$Method <- Group.names.clean[franke1$outrawdf$Group]
  ggplot(data=franke1$outrawdf, mapping=aes(n, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10()
  ggplot(data=franke1$outrawdf %>% filter(n %in% c(20,40)), mapping=aes(des_func, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10() + facet_wrap(. ~ n)
  ggplot(data=franke1$outrawdf %>% filter(n %in% c(20,40)), mapping=aes(Method, actual_intwerror, color=des_func)) + geom_point(size=5) + scale_y_log10() + facet_wrap(. ~ n)
  ggplot(data=franke1$outrawdf %>% filter(n %in% c(20,40)), mapping=aes(Method, actual_intwerrorquants.5, color=des_func)) + geom_point(size=5) + scale_y_log10() + facet_wrap(. ~ n)

  lim1$outrawdf$Method <- Group.names.clean[lim1$outrawdf$Group]
  ggplot(data=lim1$outrawdf, mapping=aes(n, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10()
  ggplot(data=lim1$outrawdf %>% filter(n %in% c(20,40)), mapping=aes(des_func, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10() + facet_wrap(. ~ n)
  ggplot(data=lim1$outrawdf %>% filter(n %in% c(20,40)), mapping=aes(Method, actual_intwerror, color=des_func)) + geom_point(size=5) + scale_y_log10() + facet_wrap(. ~ n)

  beam1$outrawdf$Method <- Group.names.clean[beam1$outrawdf$Group]
  ggplot(data=beam1$outrawdf, mapping=aes(n, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10()
  ggplot(data=beam1$outrawdf %>% filter(n %in% c(30,60)), mapping=aes(des_func, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10() + facet_wrap(. ~ n)
  ggplot(data=beam1$outrawdf %>% filter(n %in% c(30,60)), mapping=aes(Method, actual_intwerror, color=des_func)) + geom_point(size=5) + scale_y_log10() + facet_wrap(. ~ n)

  # otl1 <- readRDS("./compare_adaptconcept_output/wingweight_D=10_L=5_b=5_B=40_R=10_n0=0_s1b=6_S=1008000/object.rds")
  otl1$outrawdf$Method <- Group.names.clean[otl1$outrawdf$Group]
  ggplot(data=otl1$outrawdf, mapping=aes(n, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10()
  ggplot(data=otl1$outrawdf %>% filter(n %in% c(60,120)), mapping=aes(des_func, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10() + facet_wrap(. ~ n)
  ggplot(data=otl1$outrawdf %>% filter(n %in% c(60,120)), mapping=aes(Method, actual_intwerror, color=des_func)) + geom_point(size=5) + scale_y_log10() + facet_wrap(. ~ n)

  # piston1 <- readRDS("./compare_adaptconcept_output/wingweight_D=10_L=5_b=5_B=40_R=10_n0=0_s1b=6_S=1008000/object.rds")
  piston1$outrawdf$Method <- Group.names.clean[piston1$outrawdf$Group]
  ggplot(data=piston1$outrawdf, mapping=aes(n, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10()
  ggplot(data=piston1$outrawdf %>% filter(n %in% c(70,140)), mapping=aes(des_func, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10() + facet_wrap(. ~ n)
  ggplot(data=piston1$outrawdf %>% filter(n %in% c(70,140)), mapping=aes(Method, actual_intwerror, color=des_func)) + geom_point(size=5) + scale_y_log10() + facet_wrap(. ~ n)

  # bh1 <- readRDS("./compare_adaptconcept_output/wingweight_D=10_L=5_b=5_B=40_R=10_n0=0_s1b=6_S=1008000/object.rds")
  bh1$outrawdf$Method <- Group.names.clean[bh1$outrawdf$Group]
  ggplot(data=bh1$outrawdf, mapping=aes(n, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10()
  ggplot(data=bh1$outrawdf %>% filter(n %in% c(80,160)), mapping=aes(des_func, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10() + facet_wrap(. ~ n)
  ggplot(data=bh1$outrawdf %>% filter(n %in% c(80,160)), mapping=aes(Method, actual_intwerror, color=des_func)) + geom_point(size=5) + scale_y_log10() + facet_wrap(. ~ n)

  wing1 <- readRDS("./compare_adaptconcept_output/wingweight_D=10_L=5_b=5_B=40_R=10_n0=0_s1b=6_S=1008000/object.rds")
  wing1$outrawdf$Method <- Group.names.clean[wing1$outrawdf$Group]
  ggplot(data=wing1$outrawdf, mapping=aes(n, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10()
  ggplot(data=wing1$outrawdf %>% filter(n %in% c(100,200)), mapping=aes(des_func, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10() + facet_wrap(. ~ n)
  ggplot(data=wing1$outrawdf %>% filter(n %in% c(100,200)), mapping=aes(Method, actual_intwerror, color=des_func)) + geom_point(size=5) + scale_y_log10() + facet_wrap(. ~ n)

}

if (F) {
  # Waterfall
  waterfall1   <- try(run_test(funcstring='waterfall',  D=2, L=2, batches=4*10, reps=reps,
                               stage1batches=3, seed_start=1009000, design_seed_start=1019000))
  waterfall1$outrawdf$Method <- Group.names.clean[waterfall1$outrawdf$Group]
  ggplot(data=waterfall1$outrawdf, mapping=aes(n, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10()
  ggplot(data=waterfall1$outrawdf %>% filter(n %in% c(20,40,80)), mapping=aes(des_func, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10() + facet_wrap(. ~ n)
  ggplot(data=waterfall1$outrawdf %>% filter(n %in% c(20,40,80)), mapping=aes(Method, actual_intwerror, color=des_func)) + geom_point(size=5) + scale_y_log10() + facet_wrap(. ~ n)

  # gramacy2Dexp
  gramacy2Dexp1   <- try(run_test(funcstring='gramacy2Dexp',  D=2, L=2, batches=4*10, reps=reps,
                                  stage1batches=3, seed_start=1009000, design_seed_start=1019000))
  gramacy2Dexp1$outrawdf$Method <- Group.names.clean[gramacy2Dexp1$outrawdf$Group]
  ggplot(data=gramacy2Dexp1$outrawdf, mapping=aes(n, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10()
  ggplot(data=gramacy2Dexp1$outrawdf %>% filter(n %in% c(20,40,80)), mapping=aes(des_func, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10() + facet_wrap(. ~ n)
  ggplot(data=gramacy2Dexp1$outrawdf %>% filter(n %in% c(20,40,80)), mapping=aes(Method, actual_intwerror, color=des_func)) + geom_point(size=5) + scale_y_log10() + facet_wrap(. ~ n)

  # gramacy6D
  gramacy6D1   <- try(run_test(funcstring='gramacy6D',  D=6, L=4, batches=4*15, reps=reps,
                               stage1batches=3, seed_start=1009000, design_seed_start=1019000))
  gramacy6D1$outrawdf$Method <- Group.names.clean[gramacy6D1$outrawdf$Group]
  ggplot(data=gramacy6D1$outrawdf, mapping=aes(n, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10()
  ggplot(data=gramacy6D1$outrawdf %>% filter(n %in% (c(20,40,80)*3)), mapping=aes(des_func, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10() + facet_wrap(. ~ n)
  ggplot(data=gramacy6D1$outrawdf %>% filter(n %in% (c(20,40,80)*3)), mapping=aes(Method, actual_intwerror, color=des_func)) + geom_point(size=5) + scale_y_log10() + facet_wrap(. ~ n)
  gramacy6D1$outrawdf %>% filter(n==240) %>% group_by(Method) %>% summarize(n=n(), meanIWE=mean(actual_intwerror), sdIW=sd(actual_intwerror)/20)
}

if (F) {
  # banana
  banana1   <- try(run_test(funcstring='banana',  D=2, L=2, batches=4*10, reps=reps,
                            stage1batches=3, seed_start=1009000, design_seed_start=1019000))
  banana1$outrawdf$Method <- Group.names.clean[banana1$outrawdf$Group]
  ggplot(data=banana1$outrawdf, mapping=aes(n, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10()
  ggplot(data=banana1$outrawdf %>% filter(n %in% (2*c(10,20,40))), mapping=aes(des_func, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10() + facet_wrap(. ~ n)
  ggplot(data=banana1$outrawdf %>% filter(n %in% (2*c(10,20,40))), mapping=aes(Method, actual_intwerror, color=des_func)) + geom_point(size=5) + scale_y_log10() + facet_wrap(. ~ n)
  banana1$outrawdf %>% filter(n==80) %>% group_by(Method) %>% summarize(n=n(), meanIWE=mean(actual_intwerror), sdIW=sd(actual_intwerror)/20)

}
if (F) {
  # gramacy2Dexp3hole
  gramacy2Dexp3hole1   <- try(run_test(funcstring='gramacy2Dexp3hole',  D=2, L=2, batches=4*10, reps=reps,
                                       stage1batches=3, seed_start=1009000, design_seed_start=1019000))
  gramacy2Dexp3hole1$outrawdf$Method <- Group.names.clean[gramacy2Dexp3hole1$outrawdf$Group]
  ggplot(data=gramacy2Dexp3hole1$outrawdf, mapping=aes(n, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10()
  ggplot(data=gramacy2Dexp3hole1$outrawdf %>% filter(n %in% (2*c(10,20,40))), mapping=aes(des_func, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10() + facet_wrap(. ~ n)
  ggplot(data=gramacy2Dexp3hole1$outrawdf %>% filter(n %in% (2*c(10,20,40))), mapping=aes(Method, actual_intwerror, color=des_func)) + geom_point(size=5) + scale_y_log10() + facet_wrap(. ~ n)
}

if (F) {
  # bananagramacy2Dexp, 6 input dims
  bangram   <- try(run_test(funcstring='bananagramacy2Dexp',  D=6, L=4, batches=4*15, reps=reps,
                            stage1batches=3, seed_start=1009000, design_seed_start=1019000))
  bangram$outrawdf$Method <- Group.names.clean[bangram$outrawdf$Group]
  ggplot(data=bangram$outrawdf, mapping=aes(n, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10()
  ggplot(data=bangram$outrawdf %>% filter(n %in% (6*c(10,20,40))), mapping=aes(des_func, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10() + facet_wrap(. ~ n)
  ggplot(data=bangram$outrawdf %>% filter(n %in% (6*c(10,20,40))), mapping=aes(Method, actual_intwerror, color=des_func)) + geom_point(size=5) + scale_y_log10() + facet_wrap(. ~ n)
}

if (F) {
  # bananatimesgramacy2Dexp, 6 input dims
  bangram2   <- try(run_test(funcstring='bananatimesgramacy2Dexp',  D=6, L=4, batches=4*15, reps=reps,
                             stage1batches=3, seed_start=1009000, design_seed_start=1019000))
  bangram2$outrawdf$Method <- Group.names.clean[bangram2$outrawdf$Group]
  ggplot(data=bangram2$outrawdf, mapping=aes(n, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10()
  ggplot(data=bangram2$outrawdf %>% filter(n %in% (6*c(10,20,40))), mapping=aes(des_func, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10() + facet_wrap(. ~ n)
  ggplot(data=bangram2$outrawdf %>% filter(n %in% (6*c(10,20,40))), mapping=aes(Method, actual_intwerror, color=des_func)) + geom_point(size=5) + scale_y_log10() + facet_wrap(. ~ n)
}


if (F) {
  cf(function(xx) {TestFunctions::levy(c(.5*(xx[1]+.8+.3*xx[2]-.3), xx[2]))})
  cf(levy)
  cf(banana)
  gcf(function(xx) {gramacy2Dexp(2*xx) + gramacy2Dexp(2*c(xx[1]-.7,xx[2]-.1)) - gramacy2Dexp(2*c(xx[1]-.5,xx[2]-.7))})
}

# ==================================================.
# ============== Doing 400 reps ---------------------------
#=======================================================.
reps2 <- 400
if (F) {
  reps2 <- 400
  # Run our new functions, use 400 reps
  banana1   <- try(run_test(funcstring='banana',  D=2, L=2, batches=4*10, reps=reps2,
                            stage1batches=3, seed_start=2000000, design_seed_start=2010000))
  banana1$outrawdf$Method <- Group.names.clean[banana1$outrawdf$Group]
  ggplot(data=banana1$outrawdf, mapping=aes(n, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10()
  ggplot(data=banana1$outrawdf %>% filter(n %in% (2*c(10,20,40))), mapping=aes(des_func, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10() + facet_wrap(. ~ n)
  ggplot(data=banana1$outrawdf %>% filter(n %in% (2*c(10,20,40))), mapping=aes(Method, actual_intwerror, color=des_func)) + geom_boxplot(size=2) + scale_y_log10() + facet_wrap(. ~ n)
  banana1$outrawdf %>% filter(n==80) %>% group_by(Method) %>% summarize(n=n(), meanIWE=mean(actual_intwerror), sdIW=sd(actual_intwerror)/20)

  levytilt1   <- try(run_test(funcstring='levytilt',  D=2, L=2, batches=4*10, reps=reps2,
                              stage1batches=3, seed_start=2001000, design_seed_start=2011000))
  levytilt1$outrawdf$Method <- Group.names.clean[levytilt1$outrawdf$Group]
  ggplot(data=levytilt1$outrawdf, mapping=aes(n, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10()
  ggplot(data=levytilt1$outrawdf %>% filter(n %in% (2*c(10,20,40))), mapping=aes(des_func, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10() + facet_wrap(. ~ n)
  ggplot(data=levytilt1$outrawdf %>% filter(n %in% (2*c(10,20,40))), mapping=aes(Method, actual_intwerror, color=des_func)) + geom_boxplot(size=2) + scale_y_log10() + facet_wrap(. ~ n)
  levytilt1$outrawdf %>% filter(n==80) %>% group_by(Method) %>% summarize(n=n(), meanIWE=mean(actual_intwerror), sdIW=sd(actual_intwerror)/20)

  gramacy2Dexp1   <- try(run_test(funcstring='gramacy2Dexp',  D=2, L=2, batches=4*10, reps=reps2,
                                  stage1batches=3, seed_start=2002000, design_seed_start=2012000))
  gramacy2Dexp1$outrawdf$Method <- Group.names.clean[gramacy2Dexp1$outrawdf$Group]
  ggplot(data=gramacy2Dexp1$outrawdf, mapping=aes(n, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10()
  ggplot(data=gramacy2Dexp1$outrawdf %>% filter(n %in% (2*c(10,20,40))), mapping=aes(des_func, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10() + facet_wrap(. ~ n)
  ggplot(data=gramacy2Dexp1$outrawdf %>% filter(n %in% (2*c(10,20,40))), mapping=aes(Method, actual_intwerror, color=des_func)) + geom_boxplot(size=2) + scale_y_log10() + facet_wrap(. ~ n)
  gramacy2Dexp1$outrawdf %>% filter(n==80) %>% group_by(Method) %>% summarize(n=n(), meanIWE=mean(actual_intwerror), sdIW=sd(actual_intwerror)/20)

  gramacy2Dexp3hole1   <- try(run_test(funcstring='gramacy2Dexp3hole',  D=2, L=2, batches=4*10, reps=reps2,
                                       stage1batches=3, seed_start=2004000, design_seed_start=2014000))
  gramacy2Dexp3hole1$outrawdf$Method <- Group.names.clean[gramacy2Dexp3hole1$outrawdf$Group]
  ggplot(data=gramacy2Dexp3hole1$outrawdf, mapping=aes(n, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10()
  ggplot(data=gramacy2Dexp3hole1$outrawdf %>% filter(n %in% (2*c(10,20,40))), mapping=aes(des_func, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10() + facet_wrap(. ~ n)
  ggplot(data=gramacy2Dexp3hole1$outrawdf %>% filter(n %in% (2*c(10,20,40))), mapping=aes(Method, actual_intwerror, color=des_func)) + geom_boxplot(size=2) + scale_y_log10() + facet_wrap(. ~ n)

  gramacy6D1   <- try(run_test(funcstring='gramacy6D',  D=6, L=4, batches=4*15, reps=reps2,
                               stage1batches=3, seed_start=2003000, design_seed_start=2013000))
  gramacy6D1$outrawdf$Method <- Group.names.clean[gramacy6D1$outrawdf$Group]
  ggplot(data=gramacy6D1$outrawdf, mapping=aes(n, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10()
  ggplot(data=gramacy6D1$outrawdf %>% filter(n %in% (6*c(10,20,40))), mapping=aes(des_func, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10() + facet_wrap(. ~ n)
  ggplot(data=gramacy6D1$outrawdf %>% filter(n %in% (6*c(10,20,40))), mapping=aes(Method, actual_intwerror, color=des_func)) + geom_boxplot(size=2) + scale_y_log10() + facet_wrap(. ~ n)
  gramacy6D1$outrawdf %>% filter(n==80) %>% group_by(Method) %>% summarize(n=n(), meanIWE=mean(actual_intwerror), sdIW=sd(actual_intwerror)/20)
}

if (F) {
  # bananagramacy2Dexp, 6 input dims
  bangram   <- try(run_test(funcstring='bananagramacy2Dexp',  D=6, L=4, batches=4*15, reps=reps2,
                            stage1batches=3, seed_start=2005000, design_seed_start=2015000))
  bangram$outrawdf$Method <- Group.names.clean[bangram$outrawdf$Group]
  ggplot(data=bangram$outrawdf, mapping=aes(n, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10()
  ggplot(data=bangram$outrawdf %>% filter(n %in% (6*c(10,20,40))), mapping=aes(des_func, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10() + facet_wrap(. ~ n)
  ggplot(data=bangram$outrawdf %>% filter(n %in% (6*c(10,20,40))), mapping=aes(Method, actual_intwerror, color=des_func)) + geom_point(size=5) + scale_y_log10() + facet_wrap(. ~ n)
}

if (F) {
  # bananatimesgramacy2Dexp, 6 input dims
  bangram2   <- try(run_test(funcstring='bananatimesgramacy2Dexp',  D=6, L=4, batches=4*15, reps=reps2,
                             stage1batches=3, seed_start=2006000, design_seed_start=2016000))
  bangram2$outrawdf$Method <- Group.names.clean[bangram2$outrawdf$Group]
  ggplot(data=bangram2$outrawdf, mapping=aes(n, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10()
  ggplot(data=bangram2$outrawdf %>% filter(n %in% (6*c(10,20,40))), mapping=aes(des_func, actual_intwerror, color=des_func)) + geom_point() + scale_y_log10() + facet_wrap(. ~ n)
  ggplot(data=bangram2$outrawdf %>% filter(n %in% (6*c(10,20,40))), mapping=aes(Method, actual_intwerror, color=des_func)) + geom_point(size=5) + scale_y_log10() + facet_wrap(. ~ n)
}
CollinErickson/GradAdaptCompExp documentation built on Dec. 17, 2021, 3:02 p.m.