#' Truth Set Redefinition
#'
#' This function imports a matrix attained from the first-step resampling,
#' compares the DESeq results with that of the original truth set and exports
#' a group of new truth sets(gene lists).
#' Note that N should be equal to the number of rows of matrix sam,
#' n should be equal to the 2 times the number of columns of matrix sam("luad",
#' "brca") and 1 time the number columns of matrix sam("sarc").
#' @param N integer. The number of iterations for resampling the original
#' truth set.
#' @param n integer. The number of samples in the new truth set.
#' @param sam matrix obtained from first-step resampling.
#' @param datatype character. "luad", "brca" or "sarc".
#' @description The function is used to obtain a new truth set for different
#' data types via a combination of certain variables.
#' @keywords DESeq2
#' @return a list which is composed of N new truth sets for N iterations,
#' respectively.
#' @export
#' @examples
#' truthset_de(100, 170, sam, datatype="brca")
truthset_de <- function(N, n, sam, datatype) {
# Apply DESeq2 differential analysis to the entire data set to get original
# truth set.
dir <- path.package(package="Deseq")
files <- grep(datatype, list.files(paste0(dir, "/data", sep="")), value=TRUE)
en_de <- deseq2(n=length(files), i=0, samp=matrix(), datatype=datatype)
# Pick n out of the entire sample group for N iterations to construct the
# new truth set.
in_de <- list()
for (i in 1:N) {
in_de[[i]] <- deseq2(n, i, samp=sam, datatype)
}
# Find out the new truth sets for each iteration
ts_de <- vector(mode="list")
for (i in 1:N) {
ts_de[[i]] <- intersect(en_de$genes, in_de[[i]]$genes)
}
# Return result
return(ts_de)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.