View source: R/mut_matrix_stranded.R
mut_matrix_stranded | R Documentation |
Make a mutation count matrix with 192 features: 96 trinucleotides and 2 strands, these can be transcription or replication strand
mut_matrix_stranded( vcf_list, ref_genome, ranges, mode = "transcription", extension = 1 )
vcf_list |
GRangesList or GRanges object. |
ref_genome |
BSgenome reference genome object |
ranges |
GRanges object with the genomic ranges of: 1. (transcription mode) the gene bodies with strand (+/-) information, or 2. (replication mode) the replication strand with 'strand_info' metadata |
mode |
"transcription" or "replication", default = "transcription" |
extension |
The number of bases, that's extracted upstream and downstream of the base substitutions. (Default: 1). |
192 mutation count matrix (96 X 2 strands)
read_vcfs_as_granges
,
mut_matrix
,
mut_strand
## See the 'read_vcfs_as_granges()' example for how we obtained the ## following data: grl <- readRDS(system.file("states/read_vcfs_as_granges_output.rds", package = "MutationalPatterns" )) ## Load the corresponding reference genome. ref_genome <- "BSgenome.Hsapiens.UCSC.hg19" library(ref_genome, character.only = TRUE) ## Transcription strand analysis: ## You can obtain the known genes from the UCSC hg19 dataset using ## Bioconductor: # BiocManager::install("TxDb.Hsapiens.UCSC.hg19.knownGene") library("TxDb.Hsapiens.UCSC.hg19.knownGene") genes_hg19 <- genes(TxDb.Hsapiens.UCSC.hg19.knownGene) mut_mat_s <- mut_matrix_stranded(grl, ref_genome, genes_hg19, mode = "transcription" ) ## You can also use a longer context mut_mat_s <- mut_matrix_stranded(grl, ref_genome, genes_hg19, mode = "transcription", extension = 2 ) ## Replication strand analysis: ## Read example bed file with replication direction annotation repli_file <- system.file("extdata/ReplicationDirectionRegions.bed", package = "MutationalPatterns" ) repli_strand <- read.table(repli_file, header = TRUE) repli_strand_granges <- GRanges( seqnames = repli_strand$Chr, ranges = IRanges( start = repli_strand$Start + 1, end = repli_strand$Stop ), strand_info = repli_strand$Class ) ## UCSC seqlevelsstyle seqlevelsStyle(repli_strand_granges) <- "UCSC" # The levels determine the order in which the features # will be countend and plotted in the downstream analyses # You can specify your preferred order of the levels: repli_strand_granges$strand_info <- factor( repli_strand_granges$strand_info, levels = c("left", "right") ) mut_mat_s_rep <- mut_matrix_stranded(grl, ref_genome, repli_strand_granges, mode = "replication" )
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.