View source: R/plot_contribution_heatmap.R
plot_contribution_heatmap | R Documentation |
Plot relative contribution of signatures in a heatmap
plot_contribution_heatmap( contribution, sig_order = NA, sample_order = NA, cluster_samples = TRUE, cluster_sigs = FALSE, method = "complete", plot_values = FALSE )
contribution |
Signature contribution matrix |
sig_order |
Character vector with the desired order of the signature names for plotting. Optional. |
sample_order |
Character vector with the desired order of the sample names for plotting. Optional. |
cluster_samples |
Hierarchically cluster samples based on euclidean distance. Default = T. |
cluster_sigs |
Hierarchically cluster sigs based on euclidean distance. Default = T. |
method |
The agglomeration method to be used for hierarchical clustering. This should be one of "ward.D", "ward.D2", "single", "complete", "average" (= UPGMA), "mcquitty" (= WPGMA), "median" (= WPGMC) or "centroid" (= UPGMC). Default = "complete". |
plot_values |
Plot relative contribution values in heatmap. Default = F. |
Heatmap with relative contribution of each signature for each sample
extract_signatures
,
mut_matrix
,
plot_contribution
,
plot_cosine_heatmap
## Extracting signatures can be computationally intensive, so ## we use pre-computed data generated with the following command: # nmf_res <- extract_signatures(mut_mat, rank = 2) nmf_res <- readRDS(system.file("states/nmf_res_data.rds", package = "MutationalPatterns" )) ## Set signature names as row names in the contribution matrix rownames(nmf_res$contribution) <- c("Signature A", "Signature B") ## Plot with clustering. plot_contribution_heatmap(nmf_res$contribution, cluster_samples = TRUE, cluster_sigs = TRUE) ## Define signature and sample order for plotting. If you have a mutation or signature ## matrix, then this can be done like in the example of 'plot_cosine_heatmap()' sig_order <- c("Signature B", "Signature A") sample_order <- c( "colon1", "colon2", "colon3", "intestine1", "intestine2", "intestine3", "liver3", "liver2", "liver1" ) plot_contribution_heatmap(nmf_res$contribution, cluster_samples = FALSE, sig_order = sig_order, sample_order = sample_order ) ## It's also possible to create a contribution heatmap with text values output_text <- plot_contribution_heatmap(nmf_res$contribution, plot_values = TRUE) ## This function can also be used on the result of a signature refitting analysis. ## Here we load a existing result as an example. snv_refit <- readRDS(system.file("states/strict_snv_refit.rds", package = "MutationalPatterns" )) plot_contribution_heatmap(snv_refit$contribution, cluster_samples = TRUE, cluster_sigs = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.