library(dplyr)
library(lutz)
library(odeqcdr)
library(odeqmloctools)
library(writexl)
# Setup ------------------------------------------------------------------------
# Analyst Name
analyst <- "YourName"
# WO_Site_Year prefix
prefix <- "ContinuousDataTemplate_example"
xlsx_dir <- "C:/workspace/Data_Solicitation/examples"
xlsx_input <- "ContinuousDataTemplate_example.xlsx"
# Outputs ----------------------------------------------------------------------
setwd(xlsx_dir)
output_dir <- file.path(xlsx_dir, "Output")
# Output file names
xlsx_pre_check_output <- paste0(prefix, "_PRECHECK.xlsx")
shiny_output <- paste0(prefix, "_PreEdits_SHINY_CDR.Rdata")
changelog <- paste0(prefix, "_Changelog")
xlsx_output <- paste0(prefix, "_OUTPUT.xlsx")
#- Import the Data -------------------------------------------------------------
df0 <- odeqcdr::contin_import(file = xlsx_input)
df0.projects <- df0[["Projects"]]
df0.org <- df0[["Organization_Details"]]
df0.mloc <- df0[["Monitoring_Locations"]]
df0.results <- df0[["Results"]]
df0.audits <- df0[["Audit_Data"]]
df0.deployment <- df0[["Deployment"]]
df0.prepost <- df0[["PrePost"]]
#- Completeness Pre checks -----------------------------------------------------
# A TRUE result means something is missing
checks_df <- odeqcdr::pre_checks(template_list = df0)
# Save pre check results to xlsx
writexl::write_xlsx(checks_df,
path = file.path(output_dir, xlsx_pre_check_output),
format_headers = TRUE)
#- Row numbers for indexing ----------------------------------------------------
df1.results <- dplyr::mutate(df0.results, row.results = dplyr::row_number())
df1.audits <- dplyr::mutate(df0.audits, row.audits = dplyr::row_number())
df1.deployment <- dplyr::mutate(df0.deployment, row.deployment = dplyr::row_number())
df1.prepost <- dplyr::mutate(df0.prepost, row.prepost = dplyr::row_number())
# Keep a record of the original units
# This is to convert the units back to the original after grading.
# Only needed for Results worksheet
df1.results.units <- dplyr::select(df1.results,
row.results,
Result.Unit.orig = Result.Unit)
#- Set Project ID --------------------------------------------------------------
df1.projects <- df0.projects %>%
dplyr::mutate(Project.ID = "TMDL Data Submission",
Project.Name = "TMDL Data Submission",
Project.Description = "Data submitted to DEQ to support TMDL development or TMDL implementation")
df1.audits <- df1.audits %>%
dplyr::mutate(Alternate.Project.ID.2 = Alternate.Project.ID.1,
Alternate.Project.ID.1 = Project.ID,
Project.ID = "TMDL Data Submission")
#- Review Monitoring Location Info----------------------------------------------
df1.mloc <- odeqmloctools::launch_map(mloc = df0.mloc)
# Make manual changes to the xlsx spreadsheet and re import if needed:
# df1.mloc <- odeqcdr::contin_import(file = xlsx_input,
# sheets = c("Monitoring_Locations"))[["Monitoring_Locations"]]
# Make sure there are no duplicate entries.
df1.mloc <- dplyr::distinct(df1.mloc)
# Save R global environment just in case.
save.image(file.path(output_dir,"Renv.RData"))
#- Update Monitoring Location ID Name-------------------------------------------
# Fix monitoring location IDs w/ invalid characters
# The following are invalid characters in Monitoring Location IDs
# ` ~ ! # $ % ^ & * ( ) [ { ] } \ | ; ' " < > / ? [space]
# @ is replaced with 'at'
# The rest are replaced with '_'
df1.mloc$Monitoring.Location.ID <- odeqcdr::inchars(x = df1.mloc$Monitoring.Location.ID)
df1.deployment$Monitoring.Location.ID <- odeqcdr::inchars(x = df1.deployment$Monitoring.Location.ID)
df1.results$Monitoring.Location.ID <- odeqcdr::inchars(x = df1.results$Monitoring.Location.ID)
df1.audits$Monitoring.Location.ID <- odeqcdr::inchars(x = df1.audits$Monitoring.Location.ID)
#- Check if the correct timezone is used ---------------------------------------
# Check that monitoring stations located in the Pacific time zone have pacific time
# zones (e.g. PST/PDT) and stations in the Mountain time zone have mountain time
# zones (e.g. MST/MDT). This is checked by adding the Olson name
# timezone (see OlsonNames()) based on the monitoring location latitude and longitude.
# Make sure the latitude and longitude are correct before running this code.
# The Olson name timezone is used in dt_combine() and dst_check()
df.tz <- df1.mloc %>%
dplyr::select(Monitoring.Location.ID, Latitude, Longitude) %>%
dplyr::distinct() %>%
dplyr::mutate(tz_name = lutz::tz_lookup_coords(lat = Latitude,
lon = Longitude,
method = "accurate",
warn = FALSE)) %>%
dplyr::select(-Latitude, -Longitude)
df1.deployment <- dplyr::left_join(df1.deployment, df.tz, by = "Monitoring.Location.ID")
df1.results <- dplyr::left_join(df1.results, df.tz, by = "Monitoring.Location.ID")
df1.audits <- dplyr::left_join(df1.audits, df.tz, by = "Monitoring.Location.ID")
# Add a timezone if one is missing, The code will correct in dst_check if it's wrong.
# Flag timezones that are wrong.
df1.results <- df1.results %>%
dplyr::mutate(Activity.Start.End.Time.Zone = dplyr::case_when(tz_name == "America/Los_Angeles" &
is.na(Activity.Start.End.Time.Zone) ~ "PDT",
tz_name == "America/Boise" &
is.na(Activity.Start.End.Time.Zone) ~ "MDT",
TRUE ~ Activity.Start.End.Time.Zone),
tz_wrong = dplyr::case_when(tz_name == "America/Los_Angeles" &
Activity.Start.End.Time.Zone %in% c("PDT", "PST") ~ FALSE,
tz_name == "America/Boise" &
Activity.Start.End.Time.Zone %in% c("MDT", "MST") ~ FALSE,
TRUE ~ TRUE))
df1.audits <- df1.audits %>%
dplyr::mutate(Activity.Start.End.Time.Zone = dplyr::case_when(tz_name == "America/Los_Angeles" &
is.na(Activity.Start.End.Time.Zone) ~ "PDT",
tz_name == "America/Boise" &
is.na(Activity.Start.End.Time.Zone) ~ "MDT",
TRUE ~ Activity.Start.End.Time.Zone),
tz_wrong = dplyr::case_when(tz_name == "America/Los_Angeles" &
Activity.Start.End.Time.Zone %in% c("PDT", "PST") ~ FALSE,
tz_name == "America/Boise" &
Activity.Start.End.Time.Zone %in% c("MDT", "MST") ~ FALSE,
TRUE ~ TRUE))
# Show which rows failed the tz check (tz_wrong=TRUE)
df1.results[df1.results$tz_wrong, c("row.results")]
df1.audits[df1.audits$tz_wrong, c("row.audits")]
# check and correct for DST ----------------------------------------------------
# dst_check() checks that date and time conform to changes between
# Daylight Time and Standard Time. The output is an updated PoSIXct datetime.
# This also runs dt_combine(). Time change corrections will be identified by stations and periods.
# Any changes should be manually reviewed.
df1.results$datetime <- odeqcdr::dst_check(df = df1.results,
tz_col = "tz_name")
df1.audits$audit.datetime.start <- odeqcdr::dst_check(df = df1.audits,
date_col = "Activity.Start.Date",
time_col = "Activity.Start.Time",
tz_col = "tz_name")
df1.audits$audit.datetime.end <- odeqcdr::dst_check(df = df1.audits,
date_col = "Activity.End.Date",
time_col = "Activity.End.Time",
tz_col = "tz_name")
#- Combine Deployment date and time --------------------------------------------
# No need to check for dst.
df1.deployment$Deployment.Start.Date <- odeqcdr::dt_combine(df = df1.deployment,
date_col = "Deployment.Start.Date",
time_val = "00:00:00",
tz_col = "tz_name")
df1.deployment$Deployment.End.Date <- odeqcdr::dt_combine(df = df1.deployment,
date_col = "Deployment.End.Date",
time_val = "23:59:00",
tz_col = "tz_name")
#- Apply any corrections back to date and time columns Adds Comments -----------
df2.results <- odeqcdr::dt_parts(df = df1.results)
df2.audits <- odeqcdr::dt_parts(df = df1.audits,
datetime_col = "audit.datetime.start",
date_col = "Activity.Start.Date",
time_col = "Activity.Start.Time")
df2.audits <- odeqcdr::dt_parts(df = df1.audits,
datetime_col = "audit.datetime.end",
date_col = "Activity.End.Date",
time_col = "Activity.End.Time")
#- Convert Units ---------------------------------------------------------------
# This converts the result value and changes the Unit column.
# This is needed for grading and anomaly checking
# This converts any
# deg F -> deg C
# ug/l -> mg/l
# Add others as needed.
df3.audits <- df2.audits %>%
dplyr::mutate(Result.Value = dplyr::case_when(Result.Unit == "deg F" ~ (Result.Value - 32) * (5 / 9),
Result.Unit == "ug/l" ~ Result.Value * 0.001,
TRUE ~ Result.Value),
Result.Unit = dplyr::case_when(Result.Unit == "deg F" ~ "deg C",
Result.Unit == "ug/l" ~ "mg/l",
TRUE ~ Result.Unit))
df3.prepost <- df1.prepost %>%
dplyr::mutate(Equipment.Result.Value = dplyr::case_when(Equipment.Result.Unit == "deg F" ~ (Equipment.Result.Value - 32) * (5 / 9),
Equipment.Result.Unit == "ug/l" ~ Equipment.Result.Value * 0.001,
TRUE ~ Equipment.Result.Value),
Equipment.Result.Unit = dplyr::case_when(Equipment.Result.Unit == "deg F" ~ "deg C",
Equipment.Result.Unit == "ug/l" ~ "mg/l",
TRUE ~ Equipment.Result.Unit),
Reference.Result.Value = dplyr::case_when(Reference.Result.Unit == "deg F" ~ (Reference.Result.Value - 32) * (5 / 9),
Reference.Result.Unit == "ug/l" ~ Reference.Result.Value * 0.001,
TRUE ~Reference.Result.Value),
Reference.Result.Unit = dplyr::case_when(Reference.Result.Unit == "deg F" ~ "deg C",
Reference.Result.Unit == "ug/l" ~ "mg/l",
TRUE ~ Reference.Result.Unit))
df3.results <- df2.results %>%
dplyr::mutate(Result.Value = dplyr::case_when(Result.Unit == "deg F" ~ (Result.Value - 32) * (5 / 9),
Result.Unit == "ug/l" ~ Result.Value * 0.001,
TRUE ~ Result.Value),
Result.Unit = dplyr::case_when(Result.Unit == "deg F" ~ "deg C",
Result.Unit == "ug/l" ~ "mg/l",
TRUE ~ Result.Unit))
#- Grade PrePost ---------------------------------------------------------------
df3.results$accDQL <- odeqcdr::dql_accuracy(prepost = df3.prepost,
results = df3.results)
#- Grade Audits ----------------------------------------------------------------
df3.results$precDQL <- odeqcdr::dql_precision(audits = df3.audits,
results = df3.results,
deployment = df1.deployment)
df3.audits.dql <- odeqcdr::dql_precision(audits = df3.audits,
results = df3.results,
deployment = df1.deployment,
audits_only = TRUE)
#- Final DQL -------------------------------------------------------------------
# Set up final grade column to be verified using shiny app and further review
# Update the rDQL when the submitted result status == "Rejected"
# Automatically set Result.Status.ID = "Rejected" when results are outside of deployment period
df4.results <- df3.results %>%
dplyr::left_join(df1.deployment[,c("Monitoring.Location.ID", "Equipment.ID",
"Characteristic.Name", "Deployment.Start.Date",
"Deployment.End.Date")],
by = c("Monitoring.Location.ID", "Equipment.ID", "Characteristic.Name")) %>%
dplyr::mutate(deployed = dplyr::if_else(datetime >= Deployment.Start.Date &
datetime <= Deployment.End.Date, TRUE, FALSE),
Result.Status.ID = dplyr::case_when(!deployed ~ "Rejected",
TRUE ~ Result.Status.ID),
rDQL = dplyr::case_when(precDQL == 'C' | accDQL == 'C' ~ 'C',
precDQL == 'B' | accDQL == 'B' ~ 'B',
precDQL == 'A' & accDQL == 'A' ~ 'A',
precDQL == 'E' & accDQL == 'E' ~ 'E',
TRUE ~ 'B'),
rDQL = dplyr::if_else(Result.Status.ID == "Rejected", "C", rDQL)) %>%
dplyr::select(-Deployment.Start.Date, -Deployment.End.Date) %>%
dplyr::arrange(row.results) %>%
as.data.frame()
#- Anomalies -------------------------------------------------------------------
# Flag potential anomalies
# Anomaly = TRUE if one of the daily summary statistics deviate from the typical range.
# First add Stream Order
df5.results <- df4.results %>%
dplyr::left_join(df1.mloc[,c("Monitoring.Location.ID", "Reachcode", "Permanent.Identifier")], by = "Monitoring.Location.ID") %>%
dplyr::left_join(odeqmloctools::ornhd[,c("StreamOrder", "Permanent_Identifier")], by = c("Permanent.Identifier" = "Permanent_Identifier")) %>%
dplyr::distinct() %>%
dplyr::ungroup()
# Get a dataframe of just the anomaly stats
df5.results.anom.stats <- df5.results %>%
dplyr::mutate(month = lubridate::month(datetime)) %>%
dplyr::left_join(odeqcdr::anomaly_stats) %>%
dplyr::select(Monitoring.Location.ID, Equipment.ID, Characteristic.Name, dplyr::contains("daily"))
df5.results.anom <- odeqcdr::anomaly_check(results = df5.results,
deployment = df1.deployment,
return_df = TRUE)
#- Output for further review using Shiny Tool ----------------------------------
# list to export to Shiny
shiny_list <- list(Deployment = df1.deployment,
Audit_Stats = df3.audits.dql,
Results_Anom = df5.results.anom)
save(shiny_list, file = file.path(output_dir, shiny_output))
# Launch Shiny app for further review.
odeqcdr::launch_shiny()
#- Make DQL and Status edits based on Shiny Review------------------------------
# Edits can also be made in the xlsx. Just skip this step.
# Updates Result Status ID also
# Results
#' [SDAL - BLM215374 - Temperature, water]
df6.results <- df5.results %>%
odeqcdr::dql_update(rows = c(56962),
DQL = "C",
comment = "Suspect result")
# Audits
df4.audits.dql <- df3.audits.dql %>%
odeqcdr::dql_update(rows = c(),
DQL = "A",
comment = "")
df7.results <- odeqcdr::status_update(df6.results)
df.audits.final <- odeqcdr::status_update(df4.audits.dql)
# Generate Change Log ----------------------------------------------------------
# Calculate difference in the dataframes
differences <- compareDF::compare_df(df7.results, df5.results, group_col = 'row.results')
# output this file into excel
compareDF::create_output_table(differences,
output_type = "xlsx",
file_name = file.path(output_dir, paste0(changelog,"_", analyst, ".xlsx")))
# Drop results outside deployment periods
df.results.final <- dplyr::filter(df7.results, deployed)
# Generate Summary Stats -------------------------------------------------------
df.sumstats <- odeqcdr::sumstats(results = df.results.final,
deployment = df1.deployment,
project_id = df1.projects$Project.ID)
#- Output updated data back to xlsx template -----------------------------------
# First set the result units back to the original
# This only converts deg C -> deg F and mg/l -> ug/l
# Add others as needed. Only needed for Results worksheet.
# Round results to 3 decimals.
df.results.final <- df.results.final %>%
dplyr::left_join(df1.results.units, by = "row.results") %>%
dplyr::mutate(Result.Value = dplyr::case_when(Result.Unit.orig == "deg F" ~ (Result.Value * (9 / 5)) + 32,
Result.Unit.orig == "ug/l" ~ Result.Value * 1000,
TRUE ~ Result.Value),
Result.Unit = dplyr::case_when(Result.Unit.orig == "deg F" ~ "deg F",
Result.Unit.orig == "ug/l" ~ "ug/l",
TRUE ~ Result.Unit),
Result.Value = round(Result.Value, digits = 3)) %>%
dplyr::select(-Result.Unit.orig) %>%
dplyr::arrange(row.results) %>%
as.data.frame()
# Update deployment format
df2.deployment <- odeqcdr::update_deploy(deploy = df1.deployment)
# Fill in the project ID
df2.deployment$Project.ID <- df0.projects$Project.ID
# Save R global environment just in case.
save.image(file.path(output_dir, "Renv.RData"))
# Export
odeqcdr::contin_export(file = file.path(output_dir, xlsx_output),
org = df0.org,
projects = df1.projects,
mloc = df1.mloc,
deployment = df2.deployment,
results = df.results.final,
prepost = df0.prepost,
audits = df3.audits.dql,
sumstats = df.sumstats,
ver = 3)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.