PAC_summary | R Documentation |
PAC_summary
summarizes data stored in a PAC object.
PAC_summary(
PAC,
norm = "counts",
type = "means",
pheno_target = NULL,
rev = FALSE,
merge_pac = TRUE
)
PAC |
PAC object containing a Pheno data.frame with samples as row
names and a Counts table with raw counts. Optionally, the PAC object may
contain normalized counts tables, saved in the norm list ('folder'). Such
normalized table can be generated using the |
norm |
Character indicating what type of data to be used. If 'counts', the raw counts in Counts will be used (default). Given any other value, the function will search for the value as a name on a data.frame stored in the normalized list-folder. |
type |
Character indicating what type of summary to be applied to the data. The function currently supports: type="means" # Group means type="sd" # Group standard deviation type="se" # Group standard error of the mean type="log2FC" # Group log2 fold changes against other groups type="log2FCgrand" # Group log2 fold changes against a grand mean type="percentgrand" # Group log2 fold changes against a grand mean |
pheno_target |
List with: 1st object being a character vector of target column in Pheno 2nd object being a character vector of the target group(s) in the target Pheno column (1st object). |
rev |
Logical whether pairwise comparisons (e.g. log2FC) should be reversed (default=FALSE). |
merge_pac |
Logical whether simplified annotation vector should
automatically be added to the Anno object of the input PAC list object
(default=TRUE). If |
Given a PAC object this function summarize data in counts(PAC) or in the norm 'folder' according to a grouping column in pheno(PAC).
A PAC object with a pheno_summary folder containing the summarized data in a data.frame. The data.frame will be named according to the pheno_target, type and norm input.
https://github.com/Danis102 for updates on the current package.
Other PAC analysis:
PAC_covplot()
,
PAC_deseq()
,
PAC_filter()
,
PAC_filtsep()
,
PAC_gtf()
,
PAC_jitter()
,
PAC_mapper()
,
PAC_nbias()
,
PAC_norm()
,
PAC_pca()
,
PAC_pie()
,
PAC_saturation()
,
PAC_sizedist()
,
PAC_stackbar()
,
PAC_trna()
,
as.PAC()
,
filtsep_bin()
,
map_rangetype()
,
tRNA_class()
load(system.file("extdata", "drosophila_sRNA_pac_filt_anno.Rdata",
package = "seqpac", mustWork = TRUE))
PAC_check(pac) # TRUE
# Easy to generate simple group summaries
pac <- PAC_summary(pac, norm = "cpm",
type = "means", pheno_target=list("stage"))
pac <- PAC_summary(pac, norm = "cpm",
type = "se", pheno_target=list("stage"))
pac <- PAC_summary(pac, norm = "cpm",
type = "log2FC", pheno_target=list("stage"))
names(summary(pac)) # Names of individual summaries
head(summary(pac)$cpmMeans_stage) # View individual summaries
summary(pac) # View merge summaries
df <- as.data.frame(tibble::as_tibble(summary(pac))) # Merge multiple summaries
head(df)
# If a pheno_target is left out, a mean of all samples will be returned:
load(system.file("extdata", "drosophila_sRNA_pac_filt_anno.Rdata",
package = "seqpac", mustWork = TRUE))
pac <- PAC_summary(pac, norm = "cpm", type = "mean")
pac <- PAC_summary(pac, norm = "cpm", type = "percentgrand")
names(summary(pac))
summary(pac)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.