##### QIM cardiovascular risk ###################################################################
# This Source Code Form is subject to the terms of the Mozilla Public
# License, v. 2.0. If a copy of the MPL was not distributed with this
# file, You can obtain one at https://mozilla.org/MPL/2.0/.
#' @name qim_cvdrisk
#' @title dMeasure Quality Improvement Measures - cardiovascular risk
#'
#' @include QualityImprovementMeasures.R
NULL
##### QIM cardiovascular risk fields ############################################################
.public(
dMeasureQIM, "qim_cvdRisk_list",
data.frame(
Patient = character(),
InternalID = integer(),
RecordNo = character(),
Age10 = integer(),
Sex = character(),
Indigenous = character(),
Ethnicity = character(),
MaritalStatus = character(),
Sexuality = character(),
CardiovascularDisease = logical(),
Diabetes = logical(),
SmokingDate = as.Date(
integer(0),
origin = "1970-01-01"
),
SmokingStatus = character(),
UrineAlbuminDate = as.Date(
integer(0),
origin = "1970-01-01"
),
UrineAlbuminValue = double(),
UrineAlbuminUnits = character(),
PersistentProteinuria = logical(),
eGFRDate = as.Date(
integer(0),
origin = "1970-01-01"
),
eGFRValue = double(),
eGFRUnits = character(),
FamilialHypercholesterolaemia = logical(),
LVH = logical(),
CholesterolDate = as.Date(
integer(0),
origin = "1970-01-01"
),
Cholesterol = double(), HDL = double(), LDL = double(),
Triglycerides = double(), CholHDLRatio = double(),
BPDate = as.Date(
integer(0),
origin = "1970-01-01"
),
BP = character(),
HbA1CDate = as.Date(
integer(0),
origin = "1970-01-01"
),
HbA1CValue = double(),
HbA1CUnits = character(),
GlucoseDate = as.Date(
integer(0),
origin = "1970-01-01"
),
GlucoseValue = double(),
GlucoseUnits = character(),
frisk = double(), frisk10 = double(), friskHI = character(),
stringsAsFactors = FALSE
)
)
##### QIM cardiovascular risk assessment methods ##########################################################
.active(dMeasureQIM, "qim_cvdRisk_measureTypes", function(value) {
if (!missing(value)) {
warning("$qim_cvdRisk_measureTypes is read-only.")
} else {
return(c("Include ATSI 35-44", "Exclude 75+", "Exclude known CVD"))
# vector of valid QIM measures options for 15 plus (for QIM reporting)
}
})
.private_init(dMeasureQIM, ".qim_cvdRisk_measure", quote(self$qim_cvdRisk_measureTypes))
.active(dMeasureQIM, "qim_cvdRisk_measure", function(value) {
if (missing(value)) {
return(private$.qim_cvdRisk_measure)
}
value <- intersect(value, self$qim_cvdRisk_measureTypes)
# only valid measure types allowed
private$.qim_cvdRisk_measure <- value
private$set_reactive(self$qim_cvdRisk_measureR, value)
})
.reactive(dMeasureQIM, "qim_cvdRisk_measureR", quote(self$qim_cvdRisk_measureTypes))
#' List of patient with information to complete cardiovascular risk assessment
#'
#' Filtered by date, and chosen clinicians
#'
#' QIM 08.Proportion of patients with the necessary risk factors assessed
#' to enable CVD assessment
#'
#' required parameters
#'
#' Age, Ethnicity (especially ATSI status)
#'
#' included - Age 45 to 74 years or older
#'
#' OR Age 35 or older + ATSI
#' (ATSI 35+ optional - included by default - see $qim_cvdRisk_measure)
#'
#' Age 75+ excluded
#' (Option to include - see $qim_cvdRisk_measure)
#'
#' Known cardiovascular disease
#' (optional - excluded by default - see $qim_cvdRisk_measure)
#'
#' Presence of diabetes. Diabetes and microalbuminuria
#'
#' if the person does not have diabetes, then the person must have a blood
#' sugar reading or HbA1C done (within two years)
#'
#' eGFR
#'
#' previous diagnosis of familial hypercholesterolaemia
#'
#' systolic blood pressure. Diastolic blood pressure
#'
#' Serum total cholesterol. Serum HDL cholesterol
#'
#' source : National Vascular Disease Prevention Alliance (NVDPA) guidelines
#' https://www.cvdcheck.org.au/australian-absolute-cardiovascular-disease-risk-calculator
#'
#' the reference date for 'most recent' measurement is 'date_to'
#'
#' @param dMeasureQIM_obj dMeasureQIM R6 object
#' @param contact patient list. default is $qim_contact.
#'
#' TRUE chooses the 'contact' system $list_contact_diabetes ('active' patients) from dMeasure object.
#'
#' FALSE chooses the 'appointment' system $diabetes_list from dMeasure object.
#' @param date_from start date. default is $date_a
#' @param date_to end date (inclusive). default is $date_b
#' @param clinicians list of clinicians to view. default is $clinicians
#' @param min_contact minimum number of contacts. default is $contact_min, initially one (1)
#' @param min_date most recent contact must be at least min_date. default is $contact_minDate, initially -Inf
#' @param max_date most recent contact at most max_date. default is $contact_maxDate
#' @param contact_type contact types which are accepted. default is $contact_type
#' @param ignoreOld ignore results/observatioins that don't qualify for quality improvement measures
#' if not supplied, reads $qim_ignoreOld
#' @param lazy force recalculate the lists?
#' @param store keep result in self$qim_cvdRisk_list_appointments
#'
#' @return dataframe of Patient (name), InternalID and measures
#' @export
list_qim_cvdRisk <- function(dMeasureQIM_obj,
contact = NA,
date_from = NA,
date_to = NA,
clinicians = NA,
min_contact = NA,
min_date = NA, max_date = NA,
contact_type = NA,
ignoreOld = NA,
lazy = FALSE,
store = TRUE) {
dMeasureQIM_obj$list_qim_cvdRisk(
contact, date_from, date_to, clinicians,
min_contact, min_date, max_date, contact_type,
ignoreOld,
lazy, store
)
}
.public(dMeasureQIM, "list_qim_cvdRisk", function(contact = NA,
date_from = NA,
date_to = NA,
clinicians = NA,
min_contact = NA,
min_date = NA, max_date = NA,
contact_type = NA,
ignoreOld = NA,
lazy = FALSE,
store = TRUE) {
if (is.na(contact)) {
contact <- self$qim_contact
}
if (is.na(date_from)) {
date_from <- self$dM$date_a
}
if (is.na(date_to)) {
date_to <- self$dM$date_b
}
if (length(clinicians) == 1 && is.na(clinicians)) {
# sometimes clinicians is a list, in which case it cannot be a single NA!
# 'if' is not vectorized so will only read the first element of the list
# but if clinicians is a single NA, then read $clinicians
clinicians <- self$dM$clinicians
}
if (is.na(min_contact)) {
min_contact <- self$dM$contact_min
}
if (is.na(min_date)) {
min_date <- self$dM$contact_minDate
}
if (is.na(max_date)) {
max_date <- self$dM$contact_maxDate
}
if (is.na(ignoreOld)) {
ignoreOld <- self$qim_ignoreOld
}
if (ignoreOld) {
obs_from <- NA
} else {
obs_from <- as.Date(-Inf, origin = "1970-01-01")
# accept very old results
}
# no additional clinician filtering based on privileges or user restrictions
if (all(is.na(clinicians)) || length(clinicians) == 0) {
clinicians <- c("") # dplyr::filter does not work on zero-length list()
}
cvdRisk_list <- self$qim_cvdRisk_list
if (self$dM$emr_db$is_open()) {
# only if EMR database is open
if (self$dM$Log) {
log_id <- self$dM$config_db$write_log_db(
query = "cvdRisk_qim",
data = list(date_from, date_to, clinicians)
)
}
if (contact) {
if (!lazy) {
contact_45_74_list <- self$dM$list_contact_45_74(
date_from, date_to, clinicians,
min_contact, min_date, max_date,
contact_type,
lazy, store
)
if ("Include ATSI 35-44" %in% self$qim_cvdRisk_measure) {
contact_ATSI_35_44_list <- self$dM$list_contact_ATSI_35_44(
date_from, date_to, clinicians,
min_contact, min_date, max_date,
contact_type,
lazy, store
)
}
if (!("Exclude 75+" %in% self$qim_cvdRisk_measure)) {
contact_75plus_list <- self$dM$list_contact_75plus(
date_from, date_to, clinicians,
min_contact, min_date, max_date,
contact_type,
lazy, store
)
}
} else {
contact_45_74_list <- self$dM$contact_45_74_list
contact_ATSI_35_44_list <- self$dM$contact_ATSI_35_44_list
contact_75plus_list <- self$dM$contact_75plus_list
}
cvdRisk_list <- contact_45_74_list
if ("Include ATSI 35-44" %in% self$qim_cvdRisk_measure) {
cvdRisk_list <- rbind(cvdRisk_list, contact_ATSI_35_44_list)
}
if (!("Exclude 75+" %in% self$qim_cvdRisk_measure)) {
cvdRisk_list <- rbind(cvdRisk_list, contact_75plus_list)
}
cvdRisk_list <- dplyr::distinct(cvdRisk_list) %>>% # remove duplicates
dplyr::select(-c(Count, Latest)) # don't need these fields
cvdRiskID <- cvdRisk_list %>>%
dplyr::pull(InternalID) %>>%
c(-1) # make sure not empty vector, which is bad for SQL filter
} else {
if (!lazy) {
self$dM$filter_appointments()
}
cvdRiskID <- c(self$dM$fortyfiveseventyfour_list(), -1)
if ("Include ATSI 35-44" %in% self$qim_cvdRisk_measure) {
cvdRiskID <- c(cvdRiskID, self$dM$ATSI_35_44_list())
}
if (!("Exclude 75+" %in% self$qim_cvdRisk_measure)) {
cvdRiskID <- c(cvdRiskID, self$dM$seventyfiveplus_list())
}
cvdRiskID <- unique(cvdRiskID) # remove duplicates
cvdRisk_list <- self$dM$db$patients %>>%
dplyr::filter(InternalID %in% cvdRiskID) %>>%
dplyr::select(Firstname, Surname, InternalID) %>>%
dplyr::collect() %>>%
dplyr::mutate(Patient = paste(Firstname, Surname)) %>>%
dplyr::select(Patient, InternalID)
# derived from self$appointments_filtered
}
cvdID <- self$dM$cvd_list(data.frame(InternalID = cvdRiskID, Date = date_to))
# known cardiovascular disease is excluded by default
if ("Exclude known CVD" %in% self$qim_cvdRisk_measure) {
cvdRisk_list <- cvdRisk_list %>>%
dplyr::filter(!(InternalID %in% cvdID))
cvdRiskID <- cvdRisk_list %>>% # re-calculate valid ID
dplyr::pull(InternalID) %>>%
c(-1) # add a dummy ID to prevent empty vector
}
# various other history items which are already at high risk of cardiovascular disease
diabetesID <- self$dM$diabetes_list(data.frame(InternalID = cvdRiskID, Date = date_to))
fHypercholesterolaemiaID <-
self$dM$familialHypercholesterolaemia_list(data.frame(InternalID = cvdRiskID, Date = date_to))
lvhID <-
self$dM$LVH_list(data.frame(InternalID = cvdRiskID, Date = date_to))
cvdRisk_list <- cvdRisk_list %>>%
dplyr::mutate(CardiovascularDisease = InternalID %in% cvdID) %>>%
dplyr::mutate(Diabetes = InternalID %in% diabetesID) %>>%
dplyr::left_join(
self$dM$smoking_obs(
cvdRiskID,
date_from = obs_from, date_to = date_to
),
by = "InternalID",
copy = TRUE
) %>>%
dplyr::left_join(
self$dM$UrineAlbumin_obs(
cvdRiskID,
date_from = obs_from, date_to = date_to
),
by = "InternalID",
copy = TRUE
) %>>%
dplyr::left_join(
self$dM$PersistentProteinuria_obs(
cvdRiskID,
date_from = obs_from, date_to = date_to
),
by = "InternalID",
copy = TRUE
) %>>%
dplyr::left_join(
self$dM$eGFR_obs(
cvdRiskID,
date_from = obs_from,
date_to = date_to
),
by = "InternalID",
copy = TRUE
) %>>%
dplyr::mutate(
FamilialHypercholesterolaemia = InternalID %in% fHypercholesterolaemiaID
) %>>%
dplyr::mutate(
LVH = InternalID %in% lvhID) %>>%
dplyr::left_join(
self$dM$Cholesterol_obs(
cvdRiskID,
date_from = obs_from,
date_to = date_to
),
by = "InternalID",
copy = TRUE
) %>>%
dplyr::left_join(
self$dM$BloodPressure_obs(
cvdRiskID,
date_from = obs_from,
date_to = date_to
),
by = "InternalID",
copy = TRUE
) %>>%
dplyr::left_join(
self$dM$HbA1C_obs(
cvdRiskID,
date_from = dplyr::if_else(
ignoreOld,
as.Date(
seq.Date(date_to, length = 2, by = "-2 year")[[2]]
# up to 2 years back (not the default for HbA1C_obs)
),
as.Date(-Inf, origin = "1970-01-01")
),
date_to = date_to
),
by = "InternalID",
copy = TRUE
) %>>%
dplyr::left_join(
self$dM$glucose_obs(
cvdRiskID,
date_from = obs_from, # default is two years old
date_to = date_to
),
by = "InternalID",
copy = TRUE
) %>>%
dMeasureQIM::add_demographics(self$dM, date_to) %>>%
dplyr::mutate(Age = dMeasure::calc_age(as.Date(DOB), date_to)) %>>%
{
dplyr::left_join(
., framinghamRiskEquation::framingham_riskequation(.),
by = "InternalID"
) %>>%
dplyr::left_join(
framinghamRiskEquation::framingham_riskequation(
., years = 10
) %>>%
dplyr::select(InternalID, frisk) %>>%
dplyr::rename(frisk10 = frisk),
by = "InternalID"
)
} %>>%
# round age group to nearest 10 years (starting age 5)
dplyr::select(
Patient, InternalID, RecordNo, Sex, Ethnicity, Indigenous,
MaritalStatus, Sexuality, Age10,
CardiovascularDisease, Diabetes, SmokingDate, SmokingStatus,
UrineAlbuminDate, UrineAlbuminValue, UrineAlbuminUnits,
PersistentProteinuria, eGFRDate, eGFRValue, eGFRUnits,
FamilialHypercholesterolaemia, LVH,
CholesterolDate, Cholesterol, HDL, LDL, Triglycerides, CholHDLRatio,
BPDate, BP,
HbA1CDate, HbA1CValue, HbA1CUnits,
GlucoseDate, GlucoseValue, GlucoseUnits,
frisk, frisk10, friskHI
)
if (store) {
self$qim_cvdRisk_list <- cvdRisk_list
}
if (self$dM$Log) {
self$dM$config_db$duration_log_db(log_id)
}
}
return(cvdRisk_list)
})
.reactive_event(
dMeasureQIM, "qim_cvdRisk_listR",
quote(
shiny::eventReactive(
c(
self$dM$contact_45_74_listR(),
self$dM$contact_75plus_listR(),
self$dM$contact_ATSI_35_44_listR(),
self$dM$appointments_filteredR(),
self$qim_contactR(),
self$qim_ignoreOldR(),
self$qim_cvdRisk_measureR()
), {
self$list_qim_cvdRisk(lazy = TRUE)
}
)
)
)
.public(
dMeasureQIM, "qim_cvdRisk_list_appointments",
data.frame(
Patient = character(),
AppointmentDate = as.Date(integer(0),
origin = "1970-01-01"
),
AppointmentTime = character(0),
Provider = character(0),
Status = character(0),
RecordNo = character(),
Age10 = integer(),
Sex = character(),
Indigenous = character(),
Ethnicity = character(),
MaritalStatus = character(),
Sexuality = character(),
CardiovascularDisease = logical(),
Diabetes = logical(),
SmokingDate = as.Date(integer(0),
origin = "1970-01-01"
),
SmokingStatus = character(),
UrineAlbuminDate = as.Date(integer(0),
origin = "1970-01-01"
),
UrineAlbuminValue = double(),
UrineAlbuminUnits = character(),
PersistentProteinuria = logical(),
eGFRDate = as.Date(integer(0),
origin = "1970-01-01"
),
eGFRValue = double(),
eGFRUnits = character(),
FamilialHypercholesterolaemia = logical(),
LVH = logical(),
CholesterolDate = as.Date(integer(0),
origin = "1970-01-01"
),
Cholesterol = double(), HDL = double(), LDL = double(),
Triglycerides = double(), CholHDLRatio = double(),
BPDate = as.Date(integer(0),
origin = "1970-01-01"
),
BP = character(),
HbA1CDate = as.Date(
integer(0),
origin = "1970-01-01"
),
HbA1CValue = double(),
HbA1CUnits = character(),
GlucoseDate = as.Date(
integer(0),
origin = "1970-01-01"
),
GlucoseValue = double(),
GlucoseUnits = character(),
frisk = double(), frisk10 = double(), friskHI = character(),
stringsAsFactors = FALSE
)
)
#' List of patient with information to complete cardiovascular risk assessment and appointment details
#'
#' Filtered by date, and chosen clinicians
#'
#' QIM 08.Proportion of patients with the necessary risk factors assessed
#' to enable CVD assessment
#'
#' required parameters
#'
#' Age, Ethnicity (especially ATSI status)
#'
#' included - Age 45 to 74 years or older
#'
#' OR Age 35 or older + ATSI
#' (ATSI 35+ optional - included by default - see $qim_cvdRisk_measure)
#'
#' Age 75+ excluded
#' (Option to include - see $qim_cvdRisk_measure)
#'
#' Known cardiovascular disease
#' (optional - excluded by default - see $qim_cvdRisk_measure)
#'
#' Presence of diabetes. Diabetes and microalbuminuria
#'
#' eGFR
#'
#' previous diagnosis of familial hypercholesterolaemia
#'
#' systolic blood pressure. Diastolic blood pressure
#'
#' Serum total cholesterol. Serum HDL cholesterol
#'
#' source : National Vascular Disease Prevention Alliance (NVDPA) guidelines
#' https://www.cvdcheck.org.au/australian-absolute-cardiovascular-disease-risk-calculator
#'
#' the reference date for 'most recent' measurement is 'date_to'
#'
#' @param dMeasureQIM_obj dMeasureQIM R6 object
#' @param contact patient list. default is $qim_contact.
#'
#' TRUE chooses the 'contact' system $list_contact_diabetes ('active' patients) from dMeasure object.
#'
#' FALSE chooses the 'appointment' system $diabetes_list from dMeasure object.
#' @param date_from start date. default is $date_a
#' @param date_to end date (inclusive). default is $date_b
#' @param clinicians list of clinicians to view. default is $clinicians
#' @param min_contact minimum number of contacts. default is $contact_min, initially one (1)
#' @param min_date most recent contact must be at least min_date. default is $contact_minDate, initially -Inf
#' @param max_date most recent contact at most max_date. default is $contact_maxDate
#' @param contact_type contact types which are accepted. default is $contact_type
#' @param ignoreOld ignore results/observatioins that don't qualify for quality improvement measures
#' if not supplied, reads $qim_ignoreOld
#' @param lazy recalculate the copd contact list?
#' @param store keep result in self$qim_cvdRisk_list_appointments
#'
#' @return dataframe of Patient (name), InternalID, appointment details and measures
#' @export
list_qim_cvdRisk_appointments <- function(dMeasureQIM_obj,
contact = NA,
date_from = NA,
date_to = NA,
clinicians = NA,
min_contact = NA,
min_date = NA, max_date = NA,
contact_type = NA,
ignoreOld = NA,
lazy = FALSE,
store = TRUE) {
dMeasureQIM_obj$list_qim_cvdRisk_appointments(
contact, date_from, date_to, clinicians,
min_contact, min_date, max_date, contact_type,
ignoreOld,
lazy, store
)
}
.public(dMeasureQIM, "list_qim_cvdRisk_appointments", function(contact = NA,
date_from = NA,
date_to = NA,
clinicians = NA,
min_contact = NA,
min_date = NA, max_date = NA,
contact_type = NA,
ignoreOld = NA,
lazy = FALSE,
store = TRUE) {
if (is.na(contact)) {
contact <- self$qim_contact
}
if (is.na(date_from)) {
date_from <- self$dM$date_a
}
if (is.na(date_to)) {
date_to <- self$dM$date_b
}
if (length(clinicians) == 1 && is.na(clinicians)) {
# sometimes clinicians is a list, in which case it cannot be a single NA!
# 'if' is not vectorized so will only read the first element of the list
# but if clinicians is a single NA, then read $clinicians
clinicians <- self$dM$clinicians
}
if (is.na(min_contact)) {
min_contact <- self$dM$contact_min
}
if (is.na(min_date)) {
min_date <- self$dM$contact_minDate
}
if (is.na(max_date)) {
max_date <- self$dM$contact_maxDate
}
if (is.na(ignoreOld)) {
ignoreOld <- self$qim_ignoreOld
}
if (ignoreOld) {
obs_from <- NA
} else {
obs_from <- as.Date(-Inf, origin = "1970-01-01")
# accept very old results
}
# no additional clinician filtering based on privileges or user restrictions
if (all(is.na(clinicians)) || length(clinicians) == 0) {
clinicians <- c("") # dplyr::filter does not work on zero-length list()
}
appointments <- self$qim_cvdRisk_list_appointments
if (self$dM$emr_db$is_open()) {
# only if EMR database is open
if (self$dM$Log) {
log_id <- self$dM$config_db$write_log_db(
query = "cvdRisk_qim_appointments",
data = list(date_from, date_to, clinicians)
)
}
if (!lazy) {
appointments <- self$list_qim_cvdRisk(
contact, date_from, date_to, clinicians,
min_contact, min_date, max_date,
contact_type, ignoreOld,
lazy, store
)
self$dM$filter_appointments_time(
date_from, date_to, clinicians,
lazy = lazy
)
} else {
appointments <- self$qim_cvdRisk_list
}
appointments <- appointments %>>%
dplyr::left_join(
self$dM$appointments_filtered_time,
by = c("InternalID", "Patient"),
copy = TRUE
) %>>%
dplyr::select(
Patient, RecordNo, AppointmentDate, AppointmentTime,
Provider, Status, tidyselect::everything()
)
self$qim_cvdRisk_list_appointments <- appointments
if (self$dM$Log) {
self$dM$config_db$duration_log_db(log_id)
}
}
return(appointments)
})
.reactive_event(
dMeasureQIM, "qim_cvdRisk_list_appointmentsR",
quote(
shiny::eventReactive(
c(
self$qim_cvdRisk_listR(),
self$dM$appointments_filtered_timeR()
), {
self$list_qim_cvdRisk_appointments(lazy = TRUE)
}
)
)
)
.public(
dMeasureQIM, "qim_cvdRisk_report",
data.frame(NULL,
stringsAsFactors = FALSE
)
)
#' Cardiovascular disease risk Quality Improvement Measure report, in the contact list
#'
#' Filtered by date, and chosen clinicians
#'
#' QIM 08.Proportion of patients with the necessary risk factors assessed to enable CVD assessment
#'
#' the reference date for 'most recent' measurement is 'date_to'
#'
#' @param dMeasureQIM_obj dMeasureQIM R6 object
#' @param contact patient list. default is $qim_contact.
#'
#' TRUE chooses the 'contact' system $list_contact_diabetes ('active' patients) from dMeasure object.
#'
#' FALSE chooses the 'appointment' system $diabetes_list from dMeasure object.
#' @param date_from start date. default is $date_a
#' @param date_to end date (inclusive). default is $date_b
#' @param clinicians list of clinicians to view. default is $clinicians
#' @param min_contact minimum number of contacts. default is $contact_min, initially one (1)
#' @param min_date most recent contact must be at least min_date. default is $contact_minDate, initially -Inf
#' @param max_date most recent contact at most max_date. default is $contact_maxDate
#' @param contact_type contact types which are accepted. default is $contact_type
#' @param demographic demographic groupings for reporting.
#' if not supplied, reads $qim_demographicGroup
#' list of available demographic groups in $qim_demographicGroupings
#' @param ignoreOld ignore results/observatioins that don't qualify for quality improvement measures
#' if not supplied, reads $qim_ignoreOld
#' @param lazy recalculate the cvdRisk contact list?
#' @param store keep result in self$qim_cvdRisk_report
#'
#' @return dataframe of Patient (name), Demographic, Measure (done or not), Count, Proportion,
#' Proportion_Demographic
#' @export
report_qim_cvdRisk <- function(dMeasureQIM_obj,
contact = NA,
date_from = NA,
date_to = NA,
clinicians = NA,
min_contact = NA,
contact_type = NA,
min_date = NA, max_date = NA,
demographic = NA,
ignoreOld = NA,
lazy = FALSE,
store = TRUE) {
dMeasureQIM_obj$report_qim_cvdRisk(
contact, date_from, date_to, clinicians,
min_contact, min_date, max_date, contact_type,
demographic,
ignoreOld, lazy, store
)
}
.public(dMeasureQIM, "report_qim_cvdRisk", function(contact = NA,
date_from = NA,
date_to = NA,
clinicians = NA,
min_contact = NA,
min_date = NA, max_date = NA,
contact_type = NA,
demographic = NA,
ignoreOld = NA,
lazy = FALSE,
store = TRUE) {
if (is.na(contact)) {
contact <- self$qim_contact
}
if (is.na(date_from)) {
date_from <- self$dM$date_a
}
if (is.na(date_to)) {
date_to <- self$dM$date_b
}
if (length(clinicians) == 1 && is.na(clinicians)) {
# sometimes clinicians is a list, in which case it cannot be a single NA!
# 'if' is not vectorized so will only read the first element of the list
# but if clinicians is a single NA, then read $clinicians
clinicians <- self$dM$clinicians
}
if (is.na(min_contact)) {
min_contact <- self$dM$contact_min
}
if (is.na(min_date)) {
min_date <- self$dM$contact_minDate
}
if (is.na(max_date)) {
max_date <- self$dM$contact_maxDate
}
if (is.na(contact_type[[1]])) {
contact_type <- self$dM$contact_type
}
if (length(demographic) == 1 && is.na(demographic)) {
demographic <- self$qim_demographicGroup
}
if (is.na(ignoreOld)) {
ignoreOld <- self$qim_ignoreOld
}
# no additional clinician filtering based on privileges or user restrictions
if (all(is.na(clinicians)) || length(clinicians) == 0) {
clinicians <- c("") # dplyr::filter does not work on zero-length list()
}
report <- self$qim_cvdRisk_report # default
if (self$dM$emr_db$is_open()) {
# only if EMR database is open
if (self$dM$Log) {
log_id <- self$dM$config_db$write_log_db(
query = "qim_cvdRisk_report",
data = list(date_from, date_to, clinicians)
)
}
report_groups <- c(demographic, "CVDriskDone")
# group by both demographic groupings and measures of interest
# add a dummy string in case there are no demographic or measure groups chosen!
if (!lazy) {
report <- self$list_qim_cvdRisk(
contact, date_from, date_to, clinicians,
min_contact, min_date, max_date, contact_type,
ignoreOld, lazy, store
)
} else {
report <- self$qim_cvdRisk_list
}
report <- report %>>%
dplyr::mutate(
CVDriskDone =
(!is.na(frisk) | !is.na(friskHI)) &
# needs to be able to do a risk calculation
(Diabetes | !is.na(HbA1CDate) | !is.na(GlucoseDate))
# and need to know whether has diabetes (or has been checked)
) %>>%
# a measure is 'done' if it exists (not NA)
# if ignoreOld = TRUE, the the observation must fall within
# the required timeframe
dplyr::group_by_at(report_groups) %>>%
# group_by_at takes a vector of strings
dplyr::summarise(n = dplyr::n()) %>>%
dplyr::ungroup() %>>% {
dplyr::select(., intersect(names(.), c(report_groups, "n")))
} %>>%
# if no rows, then grouping will not remove unnecessary columns
dplyr::mutate(Proportion = prop.table(n)) %>>%
dplyr::group_by_at(demographic) %>>%
dplyr::mutate(Proportion_Demographic = prop.table(n)) %>>%
dplyr::ungroup()
# proportion (an alternative would be proportion = n / sum(n))
if (store) {
self$qim_cvdRisk_report <- report
}
if (self$dM$Log) {
self$dM$config_db$duration_log_db(log_id)
}
}
return(report)
})
.reactive_event(
dMeasureQIM, "qim_cvdRisk_reportR",
quote(
shiny::eventReactive(
c(
self$qim_cvdRisk_listR(),
self$qim_demographicGroupR()
), {
# update if change in demographic grouping
# or change in list
self$report_qim_cvdRisk(lazy = TRUE)
# re-calculates the counts
}
)
)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.