splineadjustment<-function(data,quantiles=c(0.25,0.5,0.75)){
dm<-dimnames(data)
dataq<-normalize.quantiles(data)
dimnames(dataq)<-dm
GeneMeans<-rowMeans(dataq,na.rm = TRUE)
knots <- quantile(Means, p = quantiles)
for(i in 1:ncol(dataq)){
model <- lm (dataq[,i] ~ bs(GeneMeans, knots = knots),na.action=na.exclude)
#model2<-smooth.spline(SangerMeans,SangerOverlap[,i],cv=TRUE)
if(i==1){
DataScreen<-dataq[,i]-fitted.values(model)+GeneMeans
}else{
DataScreen<-cbind(DataScreen,dataq[,i]-fitted.values(model)+GeneMeans)
}
}
dimnames(DataScreen)<-dm
return(DataScreen)
}
ComBatCP <- function (dat, batch, mod = NULL, par.prior = TRUE,
mean.only = FALSE, ref.batch = NULL, BPPARAM = bpparam("SerialParam"),empBayes=TRUE) {
## make batch a factor and make a set of indicators for batch
if(mean.only==TRUE){
message("Using the 'mean only' version of ComBat")
}
if(length(dim(batch))>1){
stop("This version of ComBat only allows one batch variable")
} ## to be updated soon!
batch <- as.factor(batch)
batchmod <- model.matrix(~-1+batch)
if (!is.null(ref.batch)){
## check for reference batch, check value, and make appropriate changes
if (!(ref.batch%in%levels(batch))) {
stop("reference level ref.batch is not one of the levels of the batch variable")
}
cat("Using batch =",ref.batch, "as a reference batch (this batch won't change)\n")
ref <- which(levels(as.factor(batch))==ref.batch) # find the reference
batchmod[,ref] <- 1
} else {
ref <- NULL
}
message("Found", nlevels(batch), "batches")
## A few other characteristics on the batches
n.batch <- nlevels(batch)
batches <- list()
for (i in 1:n.batch) {
batches[[i]] <- which(batch == levels(batch)[i])
} # list of samples in each batch
n.batches <- sapply(batches, length)
if(any(n.batches==1)){
mean.only=TRUE
message("Note: one batch has only one sample, setting mean.only=TRUE")
}
n.array <- sum(n.batches)
## combine batch variable and covariates
design <- cbind(batchmod,mod)
## check for intercept in covariates, and drop if present
check <- apply(design, 2, function(x) all(x == 1))
if(!is.null(ref)){
check[ref] <- FALSE
} ## except don't throw away the reference batch indicator
design <- as.matrix(design[,!check])
## Number of covariates or covariate levels
message("Adjusting for", ncol(design)-ncol(batchmod), 'covariate(s) or covariate level(s)')
## Check if the design is confounded
if(qr(design)$rank < ncol(design)) {
## if(ncol(design)<=(n.batch)){stop("Batch variables are redundant! Remove one or more of the batch variables so they are no longer confounded")}
if(ncol(design)==(n.batch+1)) {
stop("The covariate is confounded with batch! Remove the covariate and rerun ComBat")
}
if(ncol(design)>(n.batch+1)) {
if((qr(design[,-c(1:n.batch)])$rank<ncol(design[,-c(1:n.batch)]))){
stop('The covariates are confounded! Please remove one or more of the covariates so the design is not confounded')
} else {
stop("At least one covariate is confounded with batch! Please remove confounded covariates and rerun ComBat")
}
}
}
## Check for missing values
NAs <- any(is.na(dat))
if(NAs){
message(c('Found',sum(is.na(dat)),'Missing Data Values'), sep=' ')}
## print(dat[1:2,])
##Standardize Data across genes
cat('Standardizing Data across genes\n')
if (!NAs){
B.hat <- solve(crossprod(design), tcrossprod(t(design), as.matrix(dat)))
} else {
B.hat <- apply(dat, 1, Beta.NA, design) # FIXME
}
## change grand.mean for ref batch
if(!is.null(ref.batch)){
grand.mean <- t(B.hat[ref, ])
} else {
grand.mean <- crossprod(n.batches/n.array, B.hat[1:n.batch,])
}
## change var.pooled for ref batch
if (!NAs){
if(!is.null(ref.batch)) {
ref.dat <- dat[, batches[[ref]]]
var.pooled <- ((ref.dat-t(design[batches[[ref]], ] %*% B.hat))^2) %*% rep(1/n.batches[ref],n.batches[ref]) # FIXME
} else {
var.pooled <- ((dat-t(design %*% B.hat))^2) %*% rep(1/n.array,n.array) # FIXME
}
} else {
if(!is.null(ref.batch)) {
ref.dat <- dat[, batches[[ref]]]
var.pooled <- rowVars(ref.dat-t(design[batches[[ref]], ]%*%B.hat), na.rm=TRUE)
} else {
var.pooled <- rowVars(dat-t(design %*% B.hat), na.rm=TRUE)
}
}
stand.mean <- t(grand.mean) %*% t(rep(1,n.array)) # FIXME
if(!is.null(design)){
tmp <- design
tmp[,c(1:n.batch)] <- 0
stand.mean <- stand.mean+t(tmp %*% B.hat) #FIXME
}
s.data <- (dat-stand.mean)/(sqrt(var.pooled) %*% t(rep(1,n.array))) # FIXME
##Get regression batch effect parameters
message("Fitting L/S model and finding priors")
batch.design <- design[, 1:n.batch]
if (!NAs){
gamma.hat <- solve(crossprod(batch.design), tcrossprod(t(batch.design),
as.matrix(s.data)))
} else{
gamma.hat <- apply(s.data, 1, Beta.NA, batch.design) # FIXME
}
delta.hat <- NULL
for (i in batches){
if(mean.only==TRUE) {
delta.hat <- rbind(delta.hat,rep(1,nrow(s.data)))
} else {
delta.hat <- rbind(delta.hat, rowVars(s.data[,i], na.rm=TRUE))
}
}
if(empBayes){
##Find Priors
gamma.bar <- rowMeans(gamma.hat)
t2 <- rowVars(gamma.hat)
a.prior <- apply(delta.hat, 1, sva:::aprior) # FIXME
b.prior <- apply(delta.hat, 1, sva:::bprior) # FIXME
## Plot empirical and parametric priors
## Find EB batch adjustments
gamma.star <- delta.star <- matrix(NA, nrow=n.batch, ncol=nrow(s.data))
if (par.prior) {
message("Finding parametric adjustments")
results <- bplapply(1:n.batch, function(i) {
if (mean.only) {
gamma.star <- postmean(gamma.hat[i,], gamma.bar[i], 1, 1, t2[i])
delta.star <- rep(1, nrow(s.data))
}
else {
temp <- sva:::it.sol(s.data[, batches[[i]]], gamma.hat[i, ],
delta.hat[i, ], gamma.bar[i], t2[i], a.prior[i],
b.prior[i])
gamma.star <- temp[1, ]
delta.star <- temp[2, ]
}
list(gamma.star=gamma.star, delta.star=delta.star)
}, BPPARAM = BPPARAM)
for (i in 1:n.batch) {
gamma.star[i,] <- results[[i]]$gamma.star
delta.star[i,] <- results[[i]]$delta.star
}
}
else {
message("Finding nonparametric adjustments")
results <- bplapply(1:n.batch, function(i) {
if (mean.only) {
delta.hat[i, ] = 1
}
temp <- int.eprior(as.matrix(s.data[, batches[[i]]]),
gamma.hat[i, ], delta.hat[i, ])
list(gamma.star=temp[1,], delta.star=temp[2,])
}, BPPARAM = BPPARAM)
for (i in 1:n.batch) {
gamma.star[i,] <- results[[i]]$gamma.star
delta.star[i,] <- results[[i]]$delta.star
}
}
}else{
#no empirical bayes adjustment:
gamma.star<-gamma.hat
delta.star<-delta.hat
}
if(!is.null(ref.batch)){
gamma.star[ref,] <- 0 ## set reference batch mean equal to 0
delta.star[ref,] <- 1 ## set reference batch variance equal to 1
}
## Normalize the Data ###
message("Adjusting the Data\n")
bayesdata <- s.data
j <- 1
for (i in batches){
bayesdata[,i] <- (bayesdata[,i]-t(batch.design[i,]%*%gamma.star))/(sqrt(delta.star[j,])%*%t(rep(1,n.batches[j]))) # FIXME
j <- j+1
}
bayesdata <- (bayesdata*(sqrt(var.pooled)%*%t(rep(1,n.array))))+stand.mean # FIXME
## tiny change still exist when tested on bladder data
## total sum of change within each batch around 1e-15
## (could be computational system error).
## Do not change ref batch at all in reference version
if(!is.null(ref.batch)){
bayesdata[, batches[[ref]]] <- dat[, batches[[ref]]]
}
return(list(correctedData=bayesdata,batchDesign=batch.design,gamma.star=gamma.star,delta.star=delta.star,varpool=var.pooled,stdmean=stand.mean))
}
BatchCorrection<-function(data1,data2,site1="Broad",site2="Sanger",CombatRes,stdPrior=TRUE,qcThresh=NULL,qcvalues1=NULL,qcvalues2=NULL){
#need to make sure it's broad first then sanger for passing to adjustnewdata
if(!is.null(qcThresh)){
data1<-data1[,qcvalues1>=qcThresh]
data2<-data2[,qcvalues2>=qcThresh]
}
site=c(rep(site1,ncol(data1)),rep(site2,ncol(data2)))
adjusted<-AdjustNewData(data1,data2,CombatRes,site,stdPrior)
return(adjusted)
}
AdjustNewData<-function(data1,data2,CombatRes,site,stdPrior=TRUE){
blevels<-levels(as.factor(site))
batch.design2<-CombatRes$batchDesign
mean.star<-CombatRes$gamma.star
var.star<-CombatRes$delta.star
ngenes<-nrow(data1)
mergedata<-cbind(data1,data2)
sd1<-ncol(data1)
dn<-dimnames(mergedata)
mergedata<-normalize.quantiles(as.matrix(mergedata))
dimnames(mergedata)<-dn
data1<-mergedata[,colnames(data1)]
data2<-mergedata[,colnames(data2)]
usegenes<-intersect(rownames(data1),rownames(CombatRes$stdmean))
data1<-data1[usegenes,]
data2<-data2[usegenes,]
ngenes<-length(usegenes)
if(stdPrior){
B_meanStd2<-matrix(CombatRes$stdmean[usegenes,1],nrow=ngenes,ncol=ncol(data1))
S_meanStd2<-matrix(CombatRes$stdmean[usegenes,1],nrow=ngenes,ncol=ncol(data2))
B_varStd2<-matrix(sqrt(CombatRes$varpool[usegenes,]),nrow=ngenes,ncol=ncol(data1))
S_varStd2<-matrix(sqrt(CombatRes$varpool[usegenes,]),nrow=ngenes,ncol=ncol(data2))
D1_all_std2<-(data1-B_meanStd2)/B_varStd2
D2_all_std2<-(data2-S_meanStd2)/S_varStd2
}else{
grand.mean1<-rowMeans(data1)
grand.mean2<-rowMeans(data2)
stand.mean1 <- t(grand.mean1) %*% t(rep(1,ncol(data1)))
stand.mean2 <- t(grand.mean2) %*% t(rep(1,ncol(data2)))
sd1<-rowSds(data1)
sd2<-rowSds(data2)
B_varStd2<-t(sd1)%*%t(rep(1,ncol(data1)))
S_varStd2<-t(sd2)%*%t(rep(1,ncol(data2)))
D1_all_std2<-(data1-stand.mean1)/B_varStd2
D2_all_std2<-(data2-stand.mean2)/S_varStd2
}
colnames(mean.star)<-rownames(CombatRes$stdmean)
B_meanAll2<-matrix(mean.star[1,usegenes],nrow=ngenes,ncol=ncol(data1))
S_meanAll2<-matrix(mean.star[2,usegenes],nrow=ngenes,ncol=ncol(data2))
colnames(var.star)<-rownames(CombatRes$stdmean)
B_var2<-sqrt(var.star[which(blevels=="Broad"),usegenes])%*%t(rep(1,ncol(data1)))
S_var2<-sqrt(var.star[which(blevels=="Sanger"),usegenes])%*%t(rep(1,ncol(data2)))
Broad_all_adjust2<-(D1_all_std2-B_meanAll2)/B_var2
Sanger_all_adjust2<-(D2_all_std2-S_meanAll2)/S_var2
Broad_all_adjust2<-(Broad_all_adjust2)*B_varStd2+B_meanStd2
Sanger_all_adjust2<-(Sanger_all_adjust2)*S_varStd2+S_meanStd2
#need to plot this data:
alldata2<-cbind(Broad_all_adjust2,Sanger_all_adjust2)
AdjData<-cbind(Broad_all_adjust2,Sanger_all_adjust2)
dn<-dimnames(alldata2)
alldata2<-normalize.quantiles(as.matrix(alldata2))
dimnames(alldata2)<-dn
return(list(qNorm=alldata2,NoNorm=AdjData))
}
RemovePC<-function(data,droppcanumber=1){
if(sum(is.na(data))!=0){
#Have NAs and need to impute missing values
#data is genes x cell lines
meanVals<-rowMeans(data,na.rm=TRUE)
genesToimpute<-which(rowSums(is.na(data))!=0)
for(i in 1:length(genesToimpute)){
selcl<-which(is.na(data[genesToimpute[i],]))
data[genesToimpute[i],selcl]<-meanVals[genesToimpute[i]]
}
}
estpca<-prcomp(t(data),scale.=TRUE)
npcas<-1:ncol(data)
pcause<-npcas[!npcas%in%droppcanumber]
df.denoised <- estpca$x[,pcause] %*% t(estpca$rotation[,pcause])
df.denoised<-t(df.denoised)
correctedData<-df.denoised*estpca$scale+estpca$center
return(correctedData)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.