#' Generates a Resolvable Row-Column Design (RowColD)
#'
#'
#' @description It randomly generates a resolvable row-column design (RowColD).
#' The design is optimized in both rows and columns blocking factors. The
#' randomization can be done across multiple locations.
#'
#' @details
#' The Row-Column design in FielDHub is built in two stages. The first step
#' constructs the blocking factor \code{Columns} using Incomplete Block Units
#' from an incomplete block design that sets the number of incomplete blocks as
#' the number of \code{Columns} in the design, each of which has a dimension
#' equal to the number of \code{Rows}. Once this design is generated, the
#' \code{Rows} are used as the \code{Row} blocking factor that is optimized for
#' A-Efficiency, but levels within the original \code{Columns} are fixed.
#' To optimize the \code{Rows} while maintaining the current optimized \code{Columns},
#' we use a heuristic algorithm that swaps at random treatment positions within
#' a given \code{Column (Block)} also selected at random. The algorithm begins
#' by calculating the A-Efficiency on the initial design, performs a swap iteration,
#' recalculates the A-Efficiency on the resulting design, and compares it with
#' the previous one to decide whether to keep or discard the new design. This
#' iterative process is repeated, by default, 1,000 times.
#'
#' @param t Number of treatments.
#' @param nrows Number of rows of a full resolvable replicate.
#' @param r Number of blocks (full resolvable replicates).
#' @param l Number of locations. By default \code{l = 1}.
#' @param plotNumber Numeric vector with the starting plot number for each
#' location. By default \code{plotNumber = 101}.
#' @param seed (optional) Real number that specifies the starting seed to obtain
#' reproducible designs.
#' @param locationNames (optional) Names for each location.
#' @param iterations Number of iterations for design optimization. By
#' default \code{iterations = 1000}.
#' @param data (optional) Data frame with label list of treatments
#'
#' @author Didier Murillo [aut],
#' Salvador Gezan [aut],
#' Ana Heilman [ctb],
#' Thomas Walk [ctb],
#' Johan Aparicio [ctb],
#' Richard Horsley [ctb]
#'
#'
#' @importFrom stats runif na.omit
#'
#' @return A list with four elements.
#' \itemize{
#' \item \code{infoDesign} is a list with information on the design parameters.
#' \item \code{resolvableBlocks} a list with the resolvable row columns blocks.
#' \item \code{concurrence} is the concurrence matrix.
#' \item \code{fieldBook} is a data frame with the row-column field book.
#' }
#'
#'
#' @references
#' Edmondson., R. N. (2021). blocksdesign: Nested and crossed block designs for
#' factorial and unstructured treatment sets. https://CRAN.R-project.org/package=blocksdesign
#'
#' @examples
#'
#' # Example 1: Generates a row-column design with 2 full blocks and 24 treatments
#' # and 6 rows. This for one location. This example uses 100 iterations for the optimization
#' # but 1000 is the default and recomended value.
#' rowcold1 <- row_column(
#' t = 24,
#' nrows = 6,
#' r = 2,
#' l = 1,
#' plotNumber= 101,
#' locationNames = "Loc1",
#' iterations = 100,
#' seed = 21
#' )
#' rowcold1$infoDesign
#' rowcold1$resolvableBlocks
#' head(rowcold1$fieldBook,12)
#'
#' # Example 2: Generates a row-column design with 2 full blocks and 30 treatments
#' # and 5 rows, for one location. This example uses 100 iterations for the optimization
#' # but 1000 is the default and recommended value.
#' # In this case, we show how to use the option data.
#' treatments <- paste("ND-", 1:30, sep = "")
#' ENTRY <- 1:30
#' treatment_list <- data.frame(list(ENTRY = ENTRY, TREATMENT = treatments))
#' head(treatment_list)
#' rowcold2 <- row_column(
#' t = 30,
#' nrows = 5,
#' r = 2,
#' l = 1,
#' plotNumber= 1001,
#' locationNames = "A",
#' seed = 15,
#' iterations = 100,
#' data = treatment_list
#' )
#' rowcold2$infoDesign
#' rowcold2$resolvableBlocks
#' head(rowcold2$fieldBook,12)
#'
#'
#' @export
row_column <- function(t = NULL, nrows = NULL, r = NULL, l = 1, plotNumber= 101,
locationNames = NULL, seed = NULL, iterations = 1000,
data = NULL) {
if (is.null(seed) || !is.numeric(seed)) seed <- runif(1, min = -50000, max = 50000)
# set.seed(seed)
k <- nrows
lookup <- FALSE
if (is.null(data)) {
if (is.null(t) || is.null(k) || is.null(r) || is.null(l)) {
shiny::validate('Some of the basic design parameters are missing (t, k, r or l).')
}
arg1 <- list(k, r, l);arg2 <- c(k, r, l)
if (base::any(lengths(arg1) != 1) || base::any(arg2 %% 1 != 0) || base::any(arg2 < 1)) {
shiny::validate('row_column() requires k, r and l to be possitive integers.')
}
if (is.numeric(t)) {
if (length(t) == 1) {
if (t == 1 || t < 1) {
shiny::validate('row_column() requires more than one treatment.')
}
nt <- t
}else if ((length(t) > 1)) {
nt <- length(t)
TRT <- t
}
} else if (is.character(t) || is.factor(t)) {
if (length(t) == 1) {
shiny::validate('incomplete_blocks() requires more than one treatment.')
}
nt <- length(t)
} else if ((length(t) > 1)) {
nt <- length(t)
}
data_up <- data.frame(list(ENTRY = 1:nt, TREATMENT = paste0("G-", 1:nt)))
colnames(data_up) <- c("ENTRY", "TREATMENT")
lookup <- TRUE
df <- data.frame(list(ENTRY = 1:nt, LABEL_TREATMENT = paste0("G-", 1:nt)))
dataLookUp <- df
} else if (!is.null(data)) {
if (is.null(t) || is.null(r) || is.null(k) || is.null(l)) {
shiny::validate('Some of the basic design parameters are missing (t, r, k or l).')
}
if(!is.data.frame(data)) shiny::validate("Data must be a data frame.")
data_up <- as.data.frame(data[,c(1,2)])
data_up <- na.omit(data_up)
colnames(data_up) <- c("ENTRY", "TREATMENT")
data_up$TREATMENT <- as.character(data_up$TREATMENT)
new_t <- length(data_up$TREATMENT)
if (t != new_t) base::stop("Number of treatments do not match with data input.")
TRT <- data_up$TREATMENT
nt <- length(TRT)
lookup <- TRUE
dataLookUp <- data.frame(list(ENTRY = 1:nt, LABEL_TREATMENT = TRT))
}
if (k >= nt) shiny::validate('incomplete_blocks() requires k < t.')
if (nt %% k != 0) {
shiny::validate('Number of treatments can not be fully distributed over the specified incomplete block specification.')
}
if(is.null(locationNames) || length(locationNames) != l) locationNames <- 1:l
nunits <- k
## New code
N <- nt * r
out_row_col_loc <- vector(mode = "list", length = l)
blocks_model <- list()
for (i in 1:l) {
reps <- r
ncols <- nt / nunits
mydes <- blocksdesign::blocks(
treatments = nt,
replicates = reps,
blocks = list(reps, ncols),
seed = seed + i
)
mydes <- rerandomize_ibd(ibd_design = mydes)
# Create row and column design
row_col_design <- mydes$Design_new |>
dplyr::mutate(Level_3 = rep(rep(paste0("B", 1:nrows), times = ncols), times = reps)) |>
dplyr::mutate(Level_3 = paste(Level_1, Level_3, sep = ".")) |>
dplyr::mutate(Level_3 = factor(Level_3, levels = unique(Level_3))) |>
dplyr::select(Level_1, Level_2, Level_3, plots, treatments)
improved_design <- improve_efficiency(row_col_design, iterations, seed = seed + i)
field_book_best_design <- improved_design$best_design
row_column_efficiency <- report_efficiency(improved_design$best_design)
blocks_model[[i]] <- row_column_efficiency
row_col_fieldbook <- field_book_best_design |>
dplyr::rename(
REP = Level_1,
COLUMN = Level_2,
ROW = Level_3,
PLOT = plots,
ENTRY = treatments) |>
dplyr::mutate(
REP = as.numeric(factor(REP, levels = unique(REP)))
) |>
dplyr::group_by(REP) |>
dplyr::mutate(
COLUMN = as.numeric(factor(COLUMN, levels = unique(COLUMN))),
ROW = as.numeric(factor(ROW, levels = unique(ROW)))
) |>
dplyr::select(PLOT, REP, COLUMN, ROW, ENTRY)
locations_df <- data.frame(list(LOCATION = rep(locationNames[i], each = N)))
row_col_fieldbook <- dplyr::bind_cols(locations_df, row_col_fieldbook)
out_row_col_loc[[i]] <- row_col_fieldbook
}
out_row_col <- dplyr::bind_rows(out_row_col_loc)
out_row_col$ENTRY <- as.numeric(out_row_col$ENTRY)
if (lookup) {
out_row_col <- dplyr::inner_join(out_row_col, dataLookUp, by = "ENTRY")
out_row_col <- out_row_col |>
dplyr::rename(TREATMENT = LABEL_TREATMENT) |>
dplyr::select(-ENTRY)
out_row_col <- dplyr::inner_join(out_row_col, data_up, by = "TREATMENT") |>
dplyr::select(LOCATION, PLOT, REP, ROW, COLUMN, ENTRY, TREATMENT)
}
out_row_col_id <- out_row_col
out_row_col_id <- out_row_col_id[order(out_row_col_id$LOCATION, out_row_col_id$REP, out_row_col_id$ROW),]
row_col_plots <- ibd_plot_numbers(nt = nt, plot.number = plotNumber, r = r, l = l)
out_row_col_id$PLOT <- as.vector(unlist(row_col_plots))
ID <- 1:nrow(out_row_col_id)
out_row_col_fieldbook <- cbind(ID, out_row_col_id)
loc <- levels(out_row_col_fieldbook$LOCATION)
ib <- nt/k
Resolvable_rc_reps <- vector(mode = "list", length = r*l)
w <- 1
for (sites in 1:l) {
for (j in 1:r) {
z <- out_row_col_fieldbook
z <- subset(z, z$LOCATION == loc[sites] & z$REP == j)
if (is.null(data)){
Resolvable_rc_reps[[w]] <- matrix(data = as.vector(z$ENTRY), nrow = nunits,
ncol = ib, byrow = TRUE)
}else {
Resolvable_rc_reps[[w]] <- matrix(data = as.vector(z$TREATMENT), nrow = nunits,
ncol = ib, byrow = TRUE)
}
w <- w + 1
}
}
NEW_Resolvable <- setNames(vector(mode = "list", length = l),
paste0("Loc_", locationNames))
x <- seq(1, r * l, r)
y <- seq(r, r * l, r)
z <- 1
for (loc in 1:l) {
NEW_Resolvable[[loc]] <- setNames(Resolvable_rc_reps[x[z]:y[z]],
paste0(rep("rep", r), 1:r))
z <- z + 1
}
df <- out_row_col_fieldbook
trt <- "ENTRY"
c1 <- concurrence_matrix(df=df, trt=trt, target='REP')
c2 <- concurrence_matrix (df=df, trt=trt, target='ROW')
c3 <- concurrence_matrix (df=df, trt=trt, target='COLUMN')
summ <- merge(c1, c2, by="Concurrence", all=TRUE)
new_summ <- merge(summ, c3, by='Concurrence', all=TRUE)
infoDesign <- list(
rows = nrows,
columns = ib,
reps = r,
treatments = nt,
locations = l,
location_names = locationNames,
seed = seed,
id_design = 9
)
output <- list(
infoDesign = infoDesign,
blocksModel = blocks_model,
resolvableBlocks = NEW_Resolvable,
concurrence = new_summ,
fieldBook = out_row_col_fieldbook
)
class(output) <- "FielDHub"
return(invisible(output))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.