dml_pliv_partial_x = function(data, y, d, z,
n_folds,
ml_l, ml_m, ml_r,
params, dml_procedure, score,
n_rep = 1, smpls = NULL,
params_l = NULL, params_m = NULL, params_r = NULL) {
stopifnot(length(z) > 1)
if (is.null(smpls)) {
smpls = lapply(1:n_rep, function(x) sample_splitting(n_folds, data))
}
all_thetas = all_ses = rep(NA_real_, n_rep)
all_preds = list()
for (i_rep in 1:n_rep) {
this_smpl = smpls[[i_rep]]
all_preds[[i_rep]] = fit_nuisance_pliv_partial_x(
data, y, d, z,
ml_l, ml_m, ml_r,
this_smpl,
params_l, params_m, params_r)
residuals = compute_pliv_partial_x_residuals(
data, y, d, z, n_folds,
this_smpl,
all_preds[[i_rep]])
u_hat = residuals$u_hat
w_hat = residuals$w_hat
r_hat_tilde = residuals$r_hat_tilde
# DML 1
if (dml_procedure == "dml1") {
thetas = vars = rep(NA_real_, n_folds)
for (i in 1:n_folds) {
test_index = this_smpl$test_ids[[i]]
orth_est = orth_pliv_partial_x_dml(
u_hat = u_hat[test_index],
w_hat = w_hat[test_index],
r_hat_tilde = r_hat_tilde[test_index],
score = score)
thetas[i] = orth_est$theta
}
all_thetas[i_rep] = mean(thetas, na.rm = TRUE)
}
if (dml_procedure == "dml2") {
orth_est = orth_pliv_partial_x_dml(
u_hat = u_hat, w_hat = w_hat, r_hat_tilde = r_hat_tilde,
score = score)
all_thetas[i_rep] = orth_est$theta
}
all_ses[i_rep] = sqrt(var_pliv_partial_x(
theta = all_thetas[i_rep], u_hat = u_hat, w_hat = w_hat,
r_hat_tilde = r_hat_tilde, score = score))
}
theta = stats::median(all_thetas)
if (length(this_smpl$train_ids) > 1) {
n = nrow(data)
} else {
n = length(this_smpl$test_ids[[1]])
}
se = se_repeated(all_ses * sqrt(n), all_thetas, theta) / sqrt(n)
t = theta / se
pval = 2 * stats::pnorm(-abs(t))
names(theta) = names(se) = d
res = list(
coef = theta, se = se, t = t, pval = pval,
thetas = all_thetas, ses = all_ses,
all_preds = all_preds, smpls = smpls)
return(res)
}
fit_nuisance_pliv_partial_x = function(data, y, d, z,
ml_l, ml_m, ml_r,
smpls,
params_l, params_m, params_r) {
train_ids = smpls$train_ids
test_ids = smpls$test_ids
# nuisance l: E[Y|X]
l_indx = names(data) != d & (names(data) %in% z == FALSE)
data_l = data[, l_indx, drop = FALSE]
task_l = mlr3::TaskRegr$new(id = paste0("nuis_l_", d), backend = data_l, target = y)
resampling_l = mlr3::rsmp("custom")
resampling_l$instantiate(task_l, train_ids, test_ids)
if (!is.null(params_l)) {
ml_l$param_set$values = params_l
}
r_l = mlr3::resample(task_l, ml_l, resampling_l, store_models = TRUE)
l_hat_list = lapply(r_l$predictions(), function(x) x$response)
# nuisance m: E[Z|X]
n_z = length(z)
m_hat_list = list()
for (i_z in seq(n_z)) {
m_indx = (names(data) != y) & (names(data) != d) & (names(data) %in% z[-i_z] == FALSE)
data_m = data[, m_indx, drop = FALSE]
task_m = mlr3::TaskRegr$new(id = paste0("nuis_m_", z[i_z]), backend = data_m, target = z[i_z])
this_ml_m = ml_m$clone()
if (!is.null(params_m)) {
this_ml_m$param_set$values = params_m
}
resampling_m = mlr3::rsmp("custom")
resampling_m$instantiate(task_m, train_ids, test_ids)
r_m = mlr3::resample(task_m, this_ml_m, resampling_m, store_models = TRUE)
m_hat_list[[i_z]] = lapply(r_m$predictions(), function(x) x$response)
}
# nuisance r: E[D|X]
r_indx = names(data) != y & (names(data) %in% z == FALSE)
data_r = data[, r_indx, drop = FALSE]
task_r = mlr3::TaskRegr$new(id = paste0("nuis_r_", d), backend = data_r, target = d)
if (!is.null(params_r)) {
ml_r$param_set$values = params_r
}
resampling_r = mlr3::rsmp("custom")
resampling_r$instantiate(task_r, train_ids, test_ids)
r_r = mlr3::resample(task_r, ml_r, resampling_r, store_models = TRUE)
r_hat_list = lapply(r_r$predictions(), function(x) x$response)
n = nrow(data)
r_hat_array = rep(NA_real_, n)
m_hat_array = matrix(NA_real_, nrow = n, ncol = n_z)
for (i_fold in seq_len(length(test_ids))) {
test_index = test_ids[[i_fold]]
r_hat_array[test_index] = r_hat_list[[i_fold]]
for (i_z in seq(n_z)) {
m_hat_array[test_index, i_z] = m_hat_list[[i_z]][[i_fold]]
}
}
D = data[, d]
Z = data[, z]
r_hat_tilde = predict(
lm(D - r_hat_array ~ 1 + as.matrix(Z - m_hat_array)),
Z - m_hat_array)
all_preds = list(
l_hat_list = l_hat_list,
r_hat_list = r_hat_list,
r_hat_tilde = r_hat_tilde)
return(all_preds)
}
compute_pliv_partial_x_residuals = function(data, y, d, z, n_folds, smpls,
all_preds) {
test_ids = smpls$test_ids
l_hat_list = all_preds$l_hat_list
r_hat_list = all_preds$r_hat_list
r_hat_tilde = all_preds$r_hat_tilde
n = nrow(data)
D = data[, d]
Y = data[, y]
u_hat = w_hat = rep(NA_real_, n)
for (i in 1:n_folds) {
test_index = test_ids[[i]]
l_hat = l_hat_list[[i]]
r_hat = r_hat_list[[i]]
u_hat[test_index] = Y[test_index] - l_hat
w_hat[test_index] = D[test_index] - r_hat
}
residuals = list(u_hat = u_hat, w_hat = w_hat, r_hat_tilde = r_hat_tilde)
return(residuals)
}
orth_pliv_partial_x_dml = function(u_hat, w_hat, r_hat_tilde, score) {
stopifnot(score == "partialling out")
theta = mean(r_hat_tilde * u_hat) / mean(r_hat_tilde * w_hat)
res = list(theta = theta)
return(res)
}
var_pliv_partial_x = function(theta, u_hat, w_hat, r_hat_tilde, score) {
stopifnot(score == "partialling out")
var = mean(1 / length(u_hat) * 1 / (mean(r_hat_tilde * w_hat))^2 *
mean(((u_hat - w_hat * theta) * r_hat_tilde)^2))
return(c(var))
}
bootstrap_pliv_partial_x = function(theta, se, data, y, d, z, n_folds, smpls,
all_preds, bootstrap,
n_rep_boot, n_rep = 1) {
for (i_rep in 1:n_rep) {
residuals = compute_pliv_partial_x_residuals(
data, y, d, z, n_folds,
smpls[[i_rep]],
all_preds[[i_rep]])
u_hat = residuals$u_hat
w_hat = residuals$w_hat
r_hat_tilde = residuals$r_hat_tilde
psi = (u_hat - w_hat * theta[i_rep]) * r_hat_tilde
psi_a = -r_hat_tilde * w_hat
n = length(psi)
weights = draw_bootstrap_weights(bootstrap, n_rep_boot, n)
this_res = functional_bootstrap(
theta[i_rep], se[i_rep], psi, psi_a, n_folds,
smpls[[i_rep]],
n_rep_boot, weights)
if (i_rep == 1) {
boot_res = this_res
} else {
boot_res$boot_coef = cbind(boot_res$boot_coef, this_res$boot_coef)
boot_res$boot_t_stat = cbind(boot_res$boot_t_stat, this_res$boot_t_stat)
}
}
return(boot_res)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.