## ----setup, include = FALSE---------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----eval=FALSE, include=TRUE-------------------------------------------------
# install.packages("lilikoi")
# library(lilikoi)
## ----eval=FALSE, include=TRUE-------------------------------------------------
# dt <- lilikoi.Loaddata(file=system.file("extdata", "plasma_breast_cancer.csv", package = "lilikoi"))
# Metadata <- dt$Metadata
# dataSet <- dt$dataSet
## ----eval=FALSE, include=TRUE-------------------------------------------------
# convertResults=lilikoi.MetaTOpathway('name')
# Metabolite_pathway_table = convertResults$table
# head(Metabolite_pathway_table)
## ----eval=FALSE, include=TRUE-------------------------------------------------
# PDSmatrix=lilikoi.PDSfun(Metabolite_pathway_table)
## ----eval=FALSE, include=TRUE-------------------------------------------------
# selected_Pathways_Weka= lilikoi.featuresSelection(PDSmatrix,threshold= 0.54,method="gain")
# selected_Pathways_Weka
## ----eval=FALSE, include=TRUE-------------------------------------------------
# # Standard Normalization
# lilikoi.preproc_norm(inputdata=Metadata, method="standard")
# lilikoi.preproc_norm(inputdata=Metadata, method="quantile")
# lilikoi.preproc_norm(inputdata=Metadata, method="median")
## ----eval=FALSE, include=TRUE-------------------------------------------------
# # KNN Imputation
# lilikoi.preproc_knn(inputdata=Metadata,method=c("knn"))
## ----eval=FALSE, include=TRUE-------------------------------------------------
# lilikoi.explr(data, demo.data, pca=TRUE, tsne=FALSE)
## ----eval=FALSE, include=TRUE-------------------------------------------------
# lilikoi.machine_learning(MLmatrix = Metadata, measurementLabels = Metadata$Label,
# significantPathways = 0,
# trainportion = 0.8, cvnum = 10, dlround=50,nrun=10, Rpart=TRUE,
# LDA=TRUE,SVM=TRUE,RF=TRUE,GBM=TRUE,PAM=FALSE,LOG=TRUE,DL=TRUE)
## ----eval=FALSE, include=TRUE-------------------------------------------------
# # Set up prognosis function arguments
# # Before running Cox-nnet, users need to provide the directory for python3 and the inst file in lilikoi
# path = path.package('lilikoi', quiet = FALSE) # path = "lilikoi/inst/", use R to run
# path = file.path(path, 'inst')
#
# python.path = "/Library/Frameworks/Python.framework/Versions/3.8/bin/python3"
#
#
# event = jcevent
# time = jctime
# percent = NULL
# exprdata = exprdata_tumor
# alpha = 0
# nfold = 5
# method = "quantile"
# cvlambda = NULL
# coxnnet = TRUE
# coxnnet_method = "gradient"
#
# library(reticulate)
#
# lilikoi.prognosis(event, time, exprdata, percent=percent, alpha=0, nfold=5, method="quantile",
# cvlambda=cvlambda,python.path=python.path,path=path,coxnnet=TRUE,coxnnet_method="gradient")
#
## ----eval=FALSE, include=TRUE-------------------------------------------------
# metamat <- t(t(Metadata[, -1]))
# metamat <- log2(metamat)
# sampleinfo <- Metadata$Label
# names(sampleinfo) <- rownames(Metadata)
# grouporder <- unique(Metadata$Label)
#
# lilikoi.KEGGplot(metamat = metamat, sampleinfo = sampleinfo, grouporder = grouporder,
# pathid = '00250', specie = 'hsa',
# filesuffix = 'GSE16873',
# Metabolite_pathway_table = Metabolite_pathway_table)
## ----eval=FALSE, include=TRUE-------------------------------------------------
# lilikoi.meta_path(PDSmatrix = PDSmatrix, selected_Pathways_Weka = selected_Pathways_Weka, Metabolite_pathway_table = Metabolite_pathway_table)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.