SMOLR_FEATURES: Get feature analysis from kernel density estimation...

View source: R/smolr_features.R

SMOLR_FEATURESR Documentation

Get feature analysis from kernel density estimation (SMoLR_KDE) data

Description

Returns a feature analysis of a kernel density estimation.

Usage

smlmr_features(x, filter = NULL, filter_value = NULL)

Arguments

x

A single molecule kernel density estimation (data type must be smolr_kde)

filter

Name of a feature to filter for. The result will be in the parameters

filter_value

Value to filter, counts features that have a value higher than filter_value

Details

Feature analysis as present in the EBImage package

Value

features

A table of features measured per channel

parameters

number of features per channel and number of filtered features

Note

Features can be applied tot the kernel density estimation images parameters using the apply_filtered_features function from the SMoLR package

Author(s)

Optical Imaging Centre ErasmusMC Rotterdam

References

https://rdrr.io/bioc/EBImage/man/computeFeatures.html

Examples


test_kde <- SMOLR_KDE(c(200,150,400,210),c(200,300,400.5,239),ch=c(2,3,4,3),threshold=0.01)

test_features <- SMOLR_FEATURES(test_kde)
test_features <- SMOLR_FEATURES(test_kde, filter="x.0.s.area", filter_value=1000)


ErasmusOIC/SMoLR documentation built on Aug. 20, 2024, 8:50 p.m.