SMOLR_KDE | R Documentation |
Fits a 2D kernel density estimation to single molecule localization data based on bkde2de from the kernsmooth package
SMOLR_KDE(x, y, ch, prec, bandwidth, input_xsize, input_ysize, px, threshold, fit, file, output)
x |
X coordinates in nm, a localizations data.frame or a list of data.frames. |
y |
Y coordinates in nm |
ch |
Channel number (default=1) |
prec |
Precision in nm (default=20) |
bandwidth |
Bandwidth of the kernel used to fit, typically a bandwidth of around the precision is used. The bandwidth is a |
xlim |
Vector with the upper and lower limit of x axis (x coordinates outside limits will be discarded if fit=TRUE) |
ylim |
Vector with the upper and lower limit of y axis (y coordinates outside limits will be discarded if fit=TRUE) |
px |
Pixelsize in nm |
threshold |
Threshold for the kde in localizations per squared nm, used to create binary image of the single molecule data |
fit |
If fit=TRUE all coordinates that lie outside of indicated xlim and ylim values are discarded |
file |
Path and name of file to save tif to (i.e. file="D:/test.tif", will return the files test_kde.tif and test_kde_bin.tif) |
output |
Set output to "tiff" to output tiff files of the KDE |
kde |
Array containing the kernel density estimation |
kde_binary |
Array containing the binary thresholded image |
parameters |
Parameters of the input |
int |
list of intensities from the kde per localization, unique feature id per localization |
inputs |
list of values that were the input in the function, for reference |
Optical Imaging Centre ErasmusMC Rotterdam
Kernel density estimation uses the bkde2D algorithm from the kernsmooth package
bkde2D
test_kde <- SMOLR_KDE(smolrdata)
plot(test_kde)
plot(test_kde)
plot(test_kde,contrast = 2,saturate = 0.05,brightness = 0)
SMOLR_PLOT(smolrdata,color=SMOLR_KDE(smolrdata)[[4]][,2],split_ch=TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.