# package function =======================================================
#' Read summary file 1 of ACS 1-year estimates
#'
#' @description This function retrieves data from summary file of ACS 1-year
#' estimates. In addition to selected geographic headers and table contents,
#' it also returns total population and coordinates of selected geographic
#' areas, as well as summary levels and geographic components.
#'
#' @param year year of the estimate
#' @param states vector of state abbreviations, such as "IN" and c("MA", "RI").
#' @param table_contents selected references of contents in census tables. Users
#' can choose a name for each reference, such as in
#' c("abc = B01001_009", "fff = B00001_001").
#' Try to make names meaningful. To find the references of table contents
#' of interest, search with function \code{\link{search_tablecontents}}.
#' @param areas For metro area, in the format like "New York metro".
#' For county, city, or town, must use the exact name as those in
#' \code{\link{dict_fips}} in the format like "kent county, RI",
#' "Boston city, MA", and "Lincoln town, RI". And special examples like
#' "Salt Lake City city, UT" must keep the "city" after "City".
#' @param geo_headers vector of references of selected geographci headers to be
#' included in the return. Search with \code{\link{search_geoheaders}}
#' @param summary_level select which summary level to keep, default to keep all.
#' It takes strings including "state", "county", "county subdivision",
#' "place", "tract", "block group", and "block" for the most common
#' levels. It also take code. Search all codes with
#' \code{\link{search_summarylevels}}.
#' @param geo_comp select which geographic component to keep, "*" to keep every
#' geo-component, "total" for "00", "urban" for "01", "urbanized area"
#' for "04", "urban cluster" for "28", "rural" for "43". Others should
#' input code, which can be found with function
#' \code{\link{search_geocomponents}}. Availability of geocomponent
#' depends on summary level.
#' @param with_margin read also margin of error in addition to estimate
#' @param dec_fill whether to fill geo_headers codes with data from decennial
#' census. The #' codes in ACS summary file are incomplete.
#' "dec2010" using decennial census 2010 data.
#' @param show_progress whether to show progress in fread()
#'
#' @return A data.table of selected data.
#'
#' @examples
#' \dontrun{
#' # read summary data using areas of selected cities
#' aaa <- read_acs1year(
#' year = 2016,
#' states = c("UT", "RI"),
#' table_contents = c("male = B01001_002", "female = B01001_026"),
#' areas = c("Salt Lake City city, UT",
#' "Providence city, RI",
#' "PLACE = RI19180"),
#' summary_level = "place",
#' with_margin = TRUE
#' )
#'
#'
#' # read data using geoheaders - all major counties
#' bbb <- read_acs1year(
#' year = 2015,
#' states = c("UT", "RI"),
#' table_contents = c("male = B01001_002", "female = B01001_026"),
#' geo_headers = c("COUNTY"),
#' summary_level = "county",
#' with_margin = TRUE
#' )
#' }
#'
#' @export
#'
read_acs1year <- function(year,
states,
table_contents = NULL,
areas = NULL,
geo_headers = NULL,
summary_level = NULL,
geo_comp = "total",
with_margin = FALSE,
dec_fill = NULL,
show_progress = TRUE){
### check if the path to census is set ###
if (Sys.getenv("PATH_TO_CENSUS") == ""){
message(paste(
"Please set up the path to downloaded census data, ",
"following the instruction at",
"https://github.com/GL-Li/totalcensus."
))
return(NULL)
}
### check whether to download data ###
path_to_census <- Sys.getenv("PATH_TO_CENSUS")
# check if need to download generated data from census2010
generated_data <- paste0(path_to_census, "/generated_data")
if (!file.exists(generated_data)){
download_generated_data()
} else {
version_file <- paste0(generated_data, "/version.txt")
if (!file.exists(version_file)){
download_generated_data()
} else {
version = readChar(version_file, 5)
if (version != "0.6.0"){
download_generated_data()
}
}
}
# check whether to download census data
not_downloaded <- c()
for (st in states){
# only check for this one file
if (!file.exists(paste0(
path_to_census, "/acs1year/", year, "/g", year, "1",
tolower(st), ".csv"
))){
not_downloaded <- c(not_downloaded, st)
}
}
if (length(not_downloaded) > 0){
cat(paste0(
"Do you want to download ",
year,
" ACS 1-year survey summary files of states ",
paste0(not_downloaded, collapse = ", "),
" and save it to your computer? ",
"It is necessary for extracting the data."
))
continue <- switch(
menu(c("yes", "no")),
TRUE,
FALSE
)
if (continue){
download_census("acs1", year, not_downloaded)
} else {
stop("You choose not to download data.")
}
}
### read data ###
if (is.null(summary_level)) summary_level <- "*"
states <- toupper(states) # allow lowerscase input
if (is.null(areas) + is.null(geo_headers) == 0){
stop("Must keep at least one of arguments areas and geo_headers NULL")
}
# add population to table contents so that it will never empty, remove it
# from table_contents if "B01003_001" is included.
if (any(grepl("B01003_001", table_contents))){
message("B01003_001 is the population column.")
}
table_contents <- table_contents[!grepl("B01003_001", table_contents)]
table_contents <- c("population = B01003_001", table_contents) %>%
unique()
content_names <- organize_tablecontents(table_contents) %>%
.[, name]
table_contents <- organize_tablecontents(table_contents) %>%
.[, reference] %>%
toupper() # allow lowcase in reference input
# turn off warning, fread() gives warnings when read non-scii characters.
options(warn = -1)
if (!is.null(areas)){
dt <- read_acs1year_areas_(
year, states, table_contents, areas, summary_level, geo_comp,
with_margin, dec_fill, show_progress
)
} else {
geo_headers <- unique(geo_headers)
dt <- read_acs1year_geoheaders_(
year, states, table_contents, geo_headers, summary_level, geo_comp,
with_margin, dec_fill, show_progress
)
}
setnames(dt, table_contents, content_names)
if (with_margin){
setnames(dt,
paste0(table_contents, "_m"),
paste0(content_names, "_margin"))
}
options(warn = 0)
return(dt)
}
# internal functions ===========================================================
# Args_____
# year: integer, year of the survey
# state: state abbreviation
# geo_headers : vector of geographic headers such as c("PLACE", "CBSA")
# table_contents: vector of the table content references like
# c("B01001_009", "B00001_001", "B10001_002")
# est_marg: stringe, read estimate data or margin of error data, takes value
# "e" for estimate and "m" for margin of error
# show_progress: wheather to show progress of fread()
#
read_acs1year_filesegment_ <- function(year,
state,
file_seg,
est_marg = "e",
show_progress = TRUE){
# read all data in a file segment and assign right column names
path_to_census <- Sys.getenv("PATH_TO_CENSUS")
# get column names from file segment, then add six ommitted ones
lookup <- get(paste0("lookup_acs1year_", year))
table_contents <- lookup[file_segment == file_seg, reference]
ommitted <- c("FILEID", "FILETYPE", "STUSAB", "CHARITER",
"SEQUENCE", "LOGRECNO")
col_names <- c(ommitted, table_contents)
file <- paste0(path_to_census, "/acs1year/", year, "/", est_marg, year, "1",
tolower(state), file_seg, "000.txt")
if (show_progress){
cat("\nReading", toupper(state), year,
"ACS 1-year survey file segment",
paste0(file_seg, "_", est_marg, "."))
}
dt <- tryCatch({
fread(file, header = FALSE, showProgress = show_progress,
integer64 = "numeric") %>%
setnames(col_names)
}, error = function(err){
message("\nPlease double check the original data: ")
message(err)
# if error, return a empty data.table
dt <- setnames(data.table(matrix(nrow = 0, ncol = length(col_names))),
col_names) %>%
.[, LOGRECNO := as.integer(LOGRECNO)]
return(dt)
})
# # convert non-numeric columns to numeric
# # some missing data are denoted as ".", which lead to the whole column read
# # as character
# for (col in table_contents){
# if (is.character(dt[, get(col)])){
# dt[, (col) := as.numeric(get(col))]
# }
# }
# add "_e" or "_m" to show the data is estimate or margin
setnames(dt, table_contents, paste0(table_contents, "_", est_marg))
return(dt)
}
read_acs1year_1_file_tablecontents_ <- function(year,
state,
file_seg,
table_contents,
est_marg = "e",
show_progress = TRUE){
# select table_contents from one file segment
table_contents <- paste0(table_contents, "_", est_marg)
dt <- read_acs1year_filesegment_(year, state, file_seg, est_marg, show_progress) %>%
.[, c("LOGRECNO", table_contents), with = FALSE] %>%
setkey(LOGRECNO)
# convert non-numeric columns to numeric
# some missing data are denoted as ".", which lead to the whole column read
# as character
for (col in table_contents){
if (is.character(dt[, get(col)])){
dt[, (col) := as.numeric(get(col))]
}
}
return(dt)
}
read_acs1year_tablecontents_ <- function(year, state, table_contents,
est_marg = "e",
show_progress = TRUE){
# select table_contents that could be from multiple file segment of a state
# locate data files for the content
lookup <- get(paste0("lookup_acs1year_", year))
file_content <- lookup_tablecontents(table_contents, lookup)
dt <- purrr::map2(file_content[, file_seg],
file_content[, table_contents],
function(x, y) read_acs1year_1_file_tablecontents_(
year, state, file_seg = x, table_contents = y,
est_marg = est_marg,
show_progress = show_progress
)) %>%
purrr::reduce(merge, all = TRUE)
return(dt)
}
read_acs1year_geoheader_file_ <- function(year,
state,
show_progress = TRUE) {
# read all data in a geographic record file and assign column names
path_to_census <- Sys.getenv("PATH_TO_CENSUS")
if (show_progress) {
cat("\nReading", state, year,
"ACS 1-year survey geography file.")
}
file <- paste0(path_to_census, "/acs1year/", year, "/g", year, "1",
tolower(state), ".csv")
# geographic header records file varies from year to year
if (year >= 2011){
dict_geoheader <- dict_acs_geoheader_2011_now
} else if (year == 2010){
dict_geoheader <- dict_acs_geoheader_2010
}else if (year == 2009){
dict_geoheader <- dict_acs_geoheader_2009_1year
} else if (year >= 2006 & year <= 2008){
dict_geoheader <- dict_acs_geoheader_2006_2008_1year
} else if (year == 2005){
dict_geoheader <- dict_acs_geoheader_2005_1year
}
# use "Latin-1" for encoding special spanish latters such as ñ in Cañada
# read all columns and then select as the file is not as big as those in
# decennial census.
geo <- fread(file, header = FALSE, encoding = "Latin-1" ,
showProgress = show_progress, colClasses = "character") %>%
setnames(dict_geoheader$reference) %>%
.[, LOGRECNO := as.numeric(LOGRECNO)]
return(geo)
}
read_acs1year_geo_ <- function(year,
state,
geo_headers = NULL,
show_progress = TRUE) {
# read selected geoheaders from geographic header records
# default geoheaders are always included in output. Do not include them in
# the geo_headers argument
default_geoheaders <- c("GEOID", "STUSAB", "NAME",
"LOGRECNO", "SUMLEV", "GEOCOMP")
geo_headers <- toupper(geo_headers) %>%
unique() %>%
setdiff(default_geoheaders)
geo <- read_acs1year_geoheader_file_(year, state, show_progress) %>%
.[, c(default_geoheaders, geo_headers), with = FALSE] %>%
setkey(LOGRECNO)
return(geo)
}
read_acs1year_areas_ <- function(year,
states,
table_contents = NULL,
areas = NULL,
summary_level = "*",
geo_comp = "*",
with_margin = FALSE,
dec_fill = NULL,
show_progress = TRUE){
# read ACS 1-year data of selected areas
#
# convert areas to the form of data.table
# geoheader code state name
# 1: PLACE 62360 UT Providence city, UT
# 2: COUNTY 005 RI Newport County, RI
dt_areas <- convert_areas(areas)
# this is used to extract geographic headers
if (!is.null(areas)) geo_headers <- unique(dt_areas[, geoheader])
# switch summary level to code
summary_level <- switch_summarylevel(summary_level)
geo_comp <- switch_geocomp(geo_comp)
# lookup of the year
lookup <- get(paste0("lookup_acs1year_", year))
for (content in table_contents) {
if (!tolower(content) %in% tolower(lookup$reference)){
stop(paste("The table content reference", content,
"does not exist."))
}
}
# === read files ===
lst_state <- list()
for (st in states) {
geo <- read_acs1year_geo_(year, st, c(geo_headers, "STATE"),
show_progress = show_progress) %>%
# convert STATE fips to state abbreviation
.[, state := convert_fips_to_names(STATE)] %>%
setkey(LOGRECNO)
# read estimate and margin from each file
if(!is.null(table_contents)){
# get files for table contents
dt <- read_acs1year_tablecontents_(
year, st, table_contents, "e", show_progress
)
if (with_margin) {
margin <- read_acs1year_tablecontents_(
year, st, table_contents, "m", show_progress
)
dt <- merge(dt, margin)
}
acs <- merge(geo, dt)
} else {
acs <- geo
}
# add coordinates from census 2010 data
if (is.null(dec_fill)){
acs <- add_coord(acs, st)
} else if (dec_fill == "dec2010"){
acs[, (geo_headers) := NULL]
acs <- add_coord(acs, st, geo_headers)
}
lst_state[[st]] <- acs[SUMLEV %like% summary_level & GEOCOMP %like% geo_comp]
}
combined <- rbindlist(lst_state) %>%
.[, LOGRECNO := NULL] %>%
.[, STATE := NULL] %>%
convert_geocomp_name()
if (!is.null(table_contents)){
setnames(combined, paste0(table_contents, "_e"), table_contents)
}
# select data for argument geo_headers
if (is.null(areas)) {
selected <- combined
} else {
selected <- map(
1:nrow(dt_areas),
function(x)
combined[get(dt_areas[x, geoheader]) %like% dt_areas[x, code] &
STUSAB %like% dt_areas[x, state]] %>%
.[, area := dt_areas[x, name]]
) %>%
rbindlist()
# %>%
# # no use of the geoheaders
# .[, unique(dt_areas[, geoheader]) := NULL]
}
# reorder columns
begin <- c("area", "GEOID", "NAME")
end <- c("GEOCOMP", "SUMLEV", "state", "STUSAB", "lon", "lat")
if (with_margin){
# estimate and margin together
contents <- paste0(rep(table_contents, each = 2),
rep(c("", "_m"), length(table_contents)))
} else {
contents <- table_contents
}
setcolorder(selected, c(begin, geo_headers, contents, end))
return(selected)
}
read_acs1year_geoheaders_ <- function(year,
states,
table_contents = NULL,
geo_headers = NULL,
summary_level = "*",
geo_comp = "*",
with_margin = FALSE,
dec_fill = NULL,
show_progress = TRUE){
# read ACS 1-year data of selected geoheaders
#
# switch summary level to code when it is given as plain text
summary_level <- switch_summarylevel(summary_level)
geo_comp <- switch_geocomp(geo_comp)
# lookup of the year
lookup <- get(paste0("lookup_acs1year_", year))
for (content in table_contents) {
if (!tolower(content) %in% tolower(lookup$reference)){
stop(paste("This table content", content, "does not exist."))
}
}
# === read files ===
lst_state <- list()
for (st in states) {
geo <- read_acs1year_geo_(year, st,
c(geo_headers, "STATE"),
show_progress = show_progress) %>%
# convert STATE fips to state abbreviation
.[, state := convert_fips_to_names(STATE)] %>%
setkey(LOGRECNO)
# read estimate and margin from each file
if(!is.null(table_contents)){
# get files for table contents
dt <- read_acs1year_tablecontents_(year, st, table_contents,
"e", show_progress)
if (with_margin) {
margin <- read_acs1year_tablecontents_(year, st, table_contents,
"m", show_progress)
dt <- merge(dt, margin)
}
acs <- merge(geo, dt)
} else {
acs <- geo
}
# add coordinates from census 2010 data
if (is.null(dec_fill)){
acs <- add_coord(acs, st)
} else if (dec_fill == "dec2010"){
acs[, (geo_headers) := NULL]
acs <- add_coord(acs, st, geo_headers)
}
lst_state[[st]] <- acs[SUMLEV %like% summary_level &
GEOCOMP %like% geo_comp]
}
combined <- rbindlist(lst_state) %>%
.[, LOGRECNO := NULL] %>%
convert_geocomp_name()
if (!"STATE" %in% geo_headers){
combined[, STATE := NULL]
}
if (!is.null(table_contents)){
setnames(combined, paste0(table_contents, "_e"), table_contents)
}
# reorder columns
begin <- c("GEOID", "NAME")
end <- c("GEOCOMP", "SUMLEV", "state", "STUSAB", "lon", "lat")
if (with_margin){
# estimate and margin together
contents <- paste0(rep(table_contents, each = 2),
rep(c("", "_m"), length(table_contents)))
} else {
contents <- table_contents
}
setcolorder(combined, c(begin, geo_headers, contents, end))
return(combined)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.