co_methylation_step2 <- function(data,kmeans_result,softPower_list,plot=FALSE){
options(stringsAsFactors=F)
all.data <- NULL
all.label <- NULL
for(i in 1:3){
require(WGCNA)
wgcna.data <- t(data[which(kmeans_result$cluster==i),])
net = blockwiseModules(wgcna.data, power = softPower_list[i],maxBlockSize = 5000,
TOMType = "signed",minModuleSize = 300,
reassignThreshold = 0, mergeCutHeight = 0.25,
numericLabels = TRUE, pamRespectsDendro = FALSE,
saveTOMs=F,networkType="signed",
verbose = 3)
#save.image(file=paste0("kmeans_",i,"WGCNA.Rdata"))
wgcna.data <- t(wgcna.data)
moduleLabels = paste(i,net$colors,sep='_')
all.label <- c(all.label,moduleLabels)
all.data <- rbind(all.data,wgcna.data)
}
all.data <- all.data[-grep("_0",all.label),]
all.label <- all.label[-grep("_0",all.label)]
if(plot==TRUE)
{
label.list <- sort(unique(all.label))
pdf("wgcna.module.pdf")
par(mfrow=c(3,3))
for(label in label.list)
{
temp.data <- all.data[which(all.label==label),]
plot(1:ncol(temp.data),seq(0,1,length.out=ncol(temp.data)),type='n',xlab='Samples',
ylab='Methylation level',main=paste0("Module ",label,',','\n',"n=",nrow(temp.data)),
cex.lab=1.2,cex.axis=1.2)
for(j in 1:nrow(temp.data))
{
lines(x=1:ncol(temp.data),y=temp.data[j,],col=240,lwd=0.1)
}
lines(x=1:ncol(temp.data),y=colMeans(temp.data),col='red',lwd=0.1)
}
dev.off()
}
return(list(profile=all.data,module_id=all.label))
}
##################################################################################
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.