roc_predictor_list <-
split(roc_predictor, seq_len(nrow(roc_predictor)))
x_train_list <- as.list(as.data.frame(x_train))
mat2list(x_train)
mat2list <- function(x) {
as.list(as.data.frame(x))
}
gr_train
length(roc_predictor_list)
mat2list(x_train)
split(roc_predictor, roc_predictor$feature)
predictor_obj <- roc_predictor_list[[1]]
split_by_feature <- function(obj) {
res <- split(obj, obj$feature)
class_add(res, c("roc_info", "roc_df"))
}
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
predictor_obj <- split_by_feature(roc_predictor)[[1]][1,]
x_new <- x_train_list[[1]]
gr_new <- gr_train
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
library(ggplot2)
library(tidyr)
library(dplyr)
subplot(
(roc_predictor %>%
filter(compared_groups == compared_groups[1]) %>%
gather(key = "type", value = "intensity", median_neg, cutoff, median_pos) %>%
ggplot(aes(as.numeric(feature), intensity, color = type)) +
geom_line() +
geom_point(shape = 5) +
scale_color_brewer(palette = 7, type = "qual")) %>%
ggplotly(),
(rez_train[[i]] %>%
filter(compared_groups == compared_groups[1]) %>%
gather(key = "type", value = "intensity", BAC, Kappa, AUC) %>%
ggplot(aes(as.numeric(feature), intensity, color = type)) +
geom_line() +
geom_point() + lims(y = c(0, 1))) %>%
ggplotly(),
nrows = 2,
shareX = TRUE
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.