#' @title Create LSTM/CNN network
#'
#' @description Creates a network consisting of an arbitrary number of CNN, LSTM and dense layers.
#' Last layer is a dense layer.
#'
#' @param maxlen Length of predictor sequence.
#' @param dropout_lstm Fraction of the units to drop for inputs.
#' @param recurrent_dropout_lstm Fraction of the units to drop for recurrent state.
#' @param layer_lstm Number of cells per network layer. Can be a scalar or vector.
#' @param layer_dense Vector specifying number of neurons per dense layer after last LSTM or CNN layer (if no LSTM used).
#' @param dropout_dense Dropout rates between dense layers. No dropout if `NULL`.
#' @param solver Optimization method, options are `"adam", "adagrad", "rmsprop"` or `"sgd"`.
#' @param learning_rate Learning rate for optimizer.
#' @param bidirectional Use bidirectional wrapper for lstm layers.
#' @param vocabulary_size Number of unique character in vocabulary.
#' @param stateful Boolean. Whether to use stateful LSTM layer.
#' @param batch_size Number of samples that are used for one network update. Only used if \code{stateful = TRUE}.
#' @param compile Whether to compile the model.
#' @param kernel_size Size of 1d convolutional layers. For multiple layers, assign a vector. (e.g, `rep(3,2)` for two layers and kernel size 3)
#' @param filters Number of filters. For multiple layers, assign a vector.
#' @param strides Stride values. For multiple layers, assign a vector.
#' @param pool_size Integer, size of the max pooling windows. For multiple layers, assign a vector.
#' @param padding Padding of CNN layers, e.g. `"same", "valid"` or `"causal"`.
#' @param dilation_rate Integer, the dilation rate to use for dilated convolution.
#' @param gap Whether to apply global average pooling after last CNN layer.
#' @param use_bias Boolean. Usage of bias for CNN layers.
#' @param residual_block Boolean. If true, the residual connections are used in CNN. It is not used in the first convolutional layer.
#' @param residual_block_length Integer. Determines how many convolutional layers (or triplets when `size_reduction_1D_conv` is `TRUE`) exist
# between the legs of a residual connection. e.g. if the `length kernel_size/filters` is 7 and `residual_block_length` is 2, there are 1+(7-1)*2 convolutional
# layers in the model when `size_reduction_1Dconv` is FALSE and 1+(7-1)*2*3 convolutional layers when `size_reduction_1Dconv` is TRUE.
#' @param size_reduction_1Dconv Boolean. When `TRUE`, the number of filters in the convolutional layers is reduced to 1/4 of the number of filters of
# the original layer by a convolution layer with kernel size 1, and number of filters are increased back to the original value by a convolution layer
# with kernel size 1 after the convolution with original kernel size with reduced number of filters.
#' @param label_input Integer or `NULL`. If not `NULL`, adds additional input layer of \code{label_input} size.
#' @param zero_mask Boolean, whether to apply zero masking before LSTM layer. Only used if model does not use any CNN layers.
#' @param label_smoothing Float in \[0, 1\]. If 0, no smoothing is applied. If > 0, loss between the predicted
#' labels and a smoothed version of the true labels, where the smoothing squeezes the labels towards 0.5.
#' The closer the argument is to 1 the more the labels get smoothed.
#' @param label_noise_matrix Matrix of label noises. Every row stands for one class and columns for percentage of labels in that class.
#' If first label contains 5 percent wrong labels and second label no noise, then
#'
#' \code{label_noise_matrix <- matrix(c(0.95, 0.05, 0, 1), nrow = 2, byrow = TRUE )}
#' @param last_layer_activation Activation function of output layer(s). For example `"sigmoid"` or `"softmax"`.
#' @param loss_fn Either `"categorical_crossentropy"` or `"binary_crossentropy"`. If `label_noise_matrix` given, will use custom `"noisy_loss"`.
#' @param num_output_layers Number of output layers.
#' @param auc_metric Whether to add AUC metric.
#' @param f1_metric Whether to add F1 metric.
#' @param bal_acc Whether to add balanced accuracy.
#' @param verbose Boolean.
#' @param batch_norm_momentum Momentum for the moving mean and the moving variance.
#' @param model_seed Set seed for model parameters in tensorflow if not `NULL`.
#' @param mixed_precision Whether to use mixed precision (https://www.tensorflow.org/guide/mixed_precision).
#' @param mirrored_strategy Whether to use distributed mirrored strategy. If NULL, will use distributed mirrored strategy only if >1 GPU available.
#' @examplesIf reticulate::py_module_available("tensorflow")
#' create_model_lstm_cnn(
#' maxlen = 500,
#' vocabulary_size = 4,
#' kernel_size = c(8, 8, 8),
#' filters = c(16, 32, 64),
#' pool_size = c(3, 3, 3),
#' layer_lstm = c(32, 64),
#' layer_dense = c(128, 4),
#' learning_rate = 0.001)
#'
#' @returns A keras model, stacks CNN, LSTM and dense layers.
#' @export
create_model_lstm_cnn <- function(
maxlen = 50,
dropout_lstm = 0,
recurrent_dropout_lstm = 0,
layer_lstm = NULL,
layer_dense = c(4),
dropout_dense = NULL,
kernel_size = NULL,
filters = NULL,
strides = NULL,
pool_size = NULL,
solver = "adam",
learning_rate = 0.001,
vocabulary_size = 4,
bidirectional = FALSE,
stateful = FALSE,
batch_size = NULL,
compile = TRUE,
padding = "same",
dilation_rate = NULL,
gap = FALSE,
use_bias = TRUE,
residual_block = FALSE,
residual_block_length = 1,
size_reduction_1Dconv = FALSE,
label_input = NULL,
zero_mask = FALSE,
label_smoothing = 0,
label_noise_matrix = NULL,
last_layer_activation = "softmax",
loss_fn = "categorical_crossentropy",
num_output_layers = 1,
auc_metric = FALSE,
f1_metric = FALSE,
bal_acc = FALSE,
verbose = TRUE,
batch_norm_momentum = 0.99,
model_seed = NULL,
mixed_precision = FALSE,
mirrored_strategy = NULL) {
if (mixed_precision) tensorflow::tf$keras$mixed_precision$set_global_policy("mixed_float16")
if (is.null(mirrored_strategy)) mirrored_strategy <- ifelse(count_gpu() > 1, TRUE, FALSE)
if (mirrored_strategy) {
mirrored_strategy <- tensorflow::tf$distribute$MirroredStrategy()
with(mirrored_strategy$scope(), {
argg <- as.list(environment())
argg$mirrored_strategy <- FALSE
model <- do.call(create_model_lstm_cnn, argg)
})
return(model)
}
layer_dense <- as.integer(layer_dense)
#browser()
if (!is.null(model_seed)) tensorflow::tf$random$set_seed(model_seed)
num_targets <- layer_dense[length(layer_dense)]
layers.lstm <- length(layer_lstm)
use.cnn <- ifelse(!is.null(kernel_size), TRUE, FALSE)
if (!is.null(layer_lstm)) {
stopifnot(length(layer_lstm) == 1 | (length(layer_lstm) == layers.lstm))
}
if (layers.lstm == 0 & !use.cnn) {
stop("Model does not use LSTM or CNN layers.")
}
if (is.null(strides)) strides <- rep(1L, length(filters))
if (is.null(dilation_rate) & use.cnn) dilation_rate <- rep(1L, length(filters))
if (use.cnn) {
same_length <- (length(kernel_size) == length(filters)) &
(length(filters) == length(strides)) &
(length(strides) == length(dilation_rate))
if (!same_length) {
stop("kernel_size, filters, dilation_rate and strides must have the same length")
}
if (residual_block & (padding != "same")) {
stop("Padding option must be same when residual block is used.")
}
}
stopifnot(maxlen > 0)
stopifnot(dropout_lstm <= 1 & dropout_lstm >= 0)
stopifnot(recurrent_dropout_lstm <= 1 & recurrent_dropout_lstm >= 0)
if (length(layer_lstm) == 1) {
layer_lstm <- rep(layer_lstm, layers.lstm)
}
if (stateful) {
input_tensor <- keras::layer_input(batch_shape = c(batch_size, maxlen, vocabulary_size))
} else {
input_tensor <- keras::layer_input(shape = c(maxlen, vocabulary_size))
}
if (use.cnn) {
for (i in 1:length(filters)) {
if (i == 1) {
output_tensor <- input_tensor %>%
keras::layer_conv_1d(
kernel_size = kernel_size[i],
padding = padding,
activation = "relu",
filters = filters[i],
strides = strides[i],
dilation_rate = dilation_rate[i],
input_shape = switch(stateful + 1, c(maxlen, vocabulary_size), NULL),
use_bias = use_bias
)
if (!is.null(pool_size) && pool_size[i] > 1) {
output_tensor <- output_tensor %>% keras::layer_max_pooling_1d(pool_size = pool_size[i])
}
output_tensor <- output_tensor %>% keras::layer_batch_normalization(momentum = batch_norm_momentum)
} else {
if (residual_block){
if ((strides[i] > 1) | (pool_size[i] > 1)) {
residual_layer <- output_tensor %>% keras::layer_average_pooling_1d(pool_size=strides[i]*pool_size[i])
} else {
residual_layer <- output_tensor
}
if (filters[i-1] != filters[i]){
residual_layer <- residual_layer %>%
keras::layer_conv_1d(
kernel_size = 1,
padding = padding,
activation = "relu",
filters = filters[i],
strides = 1,
dilation_rate = dilation_rate[i],
input_shape = switch(stateful + 1, c(maxlen, vocabulary_size), NULL),
use_bias = use_bias
)
residual_layer <- residual_layer %>% keras::layer_batch_normalization(momentum = batch_norm_momentum)
}
if (residual_block_length > 1){
for (j in 1:(residual_block_length-1)){
if (size_reduction_1Dconv){
output_tensor <- output_tensor %>%
keras::layer_conv_1d(
kernel_size = 1,
padding = padding,
activation = "relu",
filters = filters[i]/4,
strides = 1,
dilation_rate = dilation_rate[i],
input_shape = switch(stateful + 1, c(maxlen, vocabulary_size), NULL),
use_bias = use_bias
)
output_tensor <- output_tensor %>% keras::layer_batch_normalization(momentum = batch_norm_momentum)
output_tensor <- output_tensor %>%
keras::layer_conv_1d(
kernel_size = kernel_size[i],
padding = padding,
activation = "relu",
filters = filters[i]/4,
strides = 1,
dilation_rate = dilation_rate[i],
input_shape = switch(stateful + 1, c(maxlen, vocabulary_size), NULL),
use_bias = use_bias
)
output_tensor <- output_tensor %>% keras::layer_batch_normalization(momentum = batch_norm_momentum)
output_tensor <- output_tensor %>%
keras::layer_conv_1d(
kernel_size = 1,
padding = padding,
activation = "relu",
filters = filters[i],
strides = 1,
dilation_rate = dilation_rate[i],
input_shape = switch(stateful + 1, c(maxlen, vocabulary_size), NULL),
use_bias = use_bias
)
output_tensor <- output_tensor %>% keras::layer_batch_normalization(momentum = batch_norm_momentum)
} else {
output_tensor <- output_tensor %>%
keras::layer_conv_1d(
kernel_size = kernel_size[i],
padding = padding,
activation = "relu",
filters = filters[i],
strides = 1,
dilation_rate = dilation_rate[i],
input_shape = switch(stateful + 1, c(maxlen, vocabulary_size), NULL),
use_bias = use_bias
)
output_tensor <- output_tensor %>% keras::layer_batch_normalization(momentum = batch_norm_momentum)
}
}
}
}
if (size_reduction_1Dconv){
output_tensor <- output_tensor %>%
keras::layer_conv_1d(
kernel_size = 1,
padding = padding,
activation = "relu",
filters = filters[i]/4,
strides = 1,
dilation_rate = dilation_rate[i],
input_shape = switch(stateful + 1, c(maxlen, vocabulary_size), NULL),
use_bias = use_bias
)
output_tensor <- output_tensor %>% keras::layer_batch_normalization(momentum = batch_norm_momentum)
output_tensor <- output_tensor %>%
keras::layer_conv_1d(
kernel_size = kernel_size[i],
padding = padding,
activation = "relu",
filters = filters[i]/4,
strides = strides[i],
dilation_rate = dilation_rate[i],
input_shape = switch(stateful + 1, c(maxlen, vocabulary_size), NULL),
use_bias = use_bias
)
output_tensor <- output_tensor %>% keras::layer_batch_normalization(momentum = batch_norm_momentum)
output_tensor <- output_tensor %>%
keras::layer_conv_1d(
kernel_size = 1,
padding = padding,
activation = "relu",
filters = filters[i],
strides = 1,
dilation_rate = dilation_rate[i],
input_shape = switch(stateful + 1, c(maxlen, vocabulary_size), NULL),
use_bias = use_bias
)
output_tensor <- output_tensor %>% keras::layer_batch_normalization(momentum = batch_norm_momentum)
} else {
output_tensor <- output_tensor %>%
keras::layer_conv_1d(
kernel_size = kernel_size[i],
padding = padding,
activation = "relu",
filters = filters[i],
strides = strides[i],
dilation_rate = dilation_rate[i],
input_shape = switch(stateful + 1, c(maxlen, vocabulary_size), NULL),
use_bias = use_bias
)
output_tensor <- output_tensor %>% keras::layer_batch_normalization(momentum = batch_norm_momentum)
}
if (!is.null(pool_size) && pool_size[i] > 1) {
output_tensor <- output_tensor %>% keras::layer_max_pooling_1d(pool_size = pool_size[i])
}
#output_tensor <- output_tensor %>% keras::layer_batch_normalization(momentum = batch_norm_momentum)
if (residual_block){
output_tensor <- keras::layer_add(list(output_tensor, residual_layer))
}
}
}
} else {
if (zero_mask) {
output_tensor <- input_tensor %>% keras::layer_masking()
} else {
output_tensor <- input_tensor
}
}
# lstm layers
if (layers.lstm > 0) {
if (layers.lstm > 1) {
if (bidirectional) {
for (i in 1:(layers.lstm - 1)) {
output_tensor <- output_tensor %>%
keras::bidirectional(
input_shape = switch(stateful + 1, c(maxlen, vocabulary_size), NULL),
keras::layer_lstm(
units = layer_lstm[i],
return_sequences = TRUE,
dropout = dropout_lstm,
recurrent_dropout = recurrent_dropout_lstm,
stateful = stateful,
recurrent_activation = "sigmoid"
)
)
}
} else {
for (i in 1:(layers.lstm - 1)) {
output_tensor <- output_tensor %>%
keras::layer_lstm(
layer_lstm[i],
input_shape = switch(stateful + 1, c(maxlen, vocabulary_size), NULL),
return_sequences = TRUE,
dropout = dropout_lstm,
recurrent_dropout = recurrent_dropout_lstm,
stateful = stateful,
recurrent_activation = "sigmoid"
)
}
}
}
# last LSTM layer
if (bidirectional) {
output_tensor <- output_tensor %>%
keras::bidirectional(
input_shape = switch(stateful + 1, c(maxlen, vocabulary_size), NULL),
keras::layer_lstm(units = layer_lstm[length(layer_lstm)], dropout = dropout_lstm, recurrent_dropout = recurrent_dropout_lstm,
stateful = stateful, recurrent_activation = "sigmoid")
)
} else {
output_tensor <- output_tensor %>%
keras::layer_lstm(units = layer_lstm[length(layer_lstm)],
input_shape = switch(stateful + 1, c(maxlen, vocabulary_size), NULL),
dropout = dropout_lstm, recurrent_dropout = recurrent_dropout_lstm, stateful = stateful,
recurrent_activation = "sigmoid")
}
}
if (gap) {
if (layers.lstm != 0) {
stop("Global average pooling not compatible with using LSTM layer")
}
output_tensor <- output_tensor %>% keras::layer_global_average_pooling_1d()
} else {
if (layers.lstm == 0) {
output_tensor <- output_tensor %>% keras::layer_flatten()
}
}
if (!is.null(label_input)) {
input_label_list <- list()
for (i in 1:length(label_input)) {
if (!stateful) {
eval(parse(text = paste0("label_input_layer_", as.character(i), "<- keras::layer_input(c(label_input[i]))")))
} else {
eval(parse(text = paste0("label_input_layer_", as.character(i), "<- keras::layer_input(batch_shape = c(batch_size, label_input[i]))")))
}
input_label_list[[i]] <- eval(parse(text = paste0("label_input_layer_", as.character(i))))
}
output_tensor <- keras::layer_concatenate(c(
input_label_list, output_tensor
)
)
}
if (length(layer_dense) > 1) {
for (i in 1:(length(layer_dense) - 1)) {
if (!is.null(dropout_dense)) output_tensor <- output_tensor %>% keras::layer_dropout(dropout_dense[i])
output_tensor <- output_tensor %>% keras::layer_dense(units = layer_dense[i], activation = "relu")
}
}
if (num_output_layers == 1) {
if (!is.null(dropout_dense)) output_tensor <- output_tensor %>% keras::layer_dropout(dropout_dense[length(dropout_dense)])
output_tensor <- output_tensor %>%
keras::layer_dense(units = num_targets, activation = last_layer_activation, dtype = "float32")
} else {
output_list <- list()
for (i in 1:num_output_layers) {
layer_name <- paste0("output_", i, "_", num_output_layers)
if (!is.null(dropout_dense)) {
output_list[[i]] <- output_tensor %>% keras::layer_dropout(dropout_dense[length(dropout_dense)])
output_list[[i]] <- output_list[[i]] %>%
keras::layer_dense(units = num_targets, activation = last_layer_activation, name = layer_name, dtype = "float32")
} else {
output_list[[i]] <- output_tensor %>%
keras::layer_dense(units = num_targets, activation = last_layer_activation, name = layer_name, dtype = "float32")
}
}
}
if (!is.null(label_input)) {
label_inputs <- list()
for (i in 1:length(label_input)) {
eval(parse(text = paste0("label_inputs$label_input_layer_", as.character(i), "<- label_input_layer_", as.character(i))))
}
if (num_output_layers == 1) {
model <- keras::keras_model(inputs = list(label_inputs, input_tensor), outputs = output_tensor)
} else {
model <- keras::keras_model(inputs = list(label_inputs, input_tensor), outputs = output_list)
}
} else {
if (num_output_layers == 1) {
model <- keras::keras_model(inputs = input_tensor, outputs = output_tensor)
} else {
model <- keras::keras_model(inputs = input_tensor, outputs = output_list)
}
}
if (compile) {
model <- compile_model(model = model, label_smoothing = label_smoothing, layer_dense = layer_dense,
solver = solver, learning_rate = learning_rate, loss_fn = loss_fn,
num_output_layers = num_output_layers, label_noise_matrix = label_noise_matrix,
bal_acc = bal_acc, f1_metric = f1_metric, auc_metric = auc_metric)
}
argg <- c(as.list(environment()))
model <- add_hparam_list(model, argg)
if (verbose) model$summary()
return(model)
}
#' @title Create LSTM/CNN network to predict middle part of a sequence
#'
#' @description
#' Creates a network consisting of an arbitrary number of CNN, LSTM and dense layers.
#' Function creates two sub networks consisting each of (optional) CNN layers followed by an arbitrary number of LSTM layers. Afterwards the last LSTM layers
#' get concatenated and followed by one or more dense layers. Last layer is a dense layer.
#' Network tries to predict target in the middle of a sequence. If input is AACCTAAGG, input tensors should correspond to x1 = AACC, x2 = GGAA and y = T.
#'
#' @inheritParams create_model_lstm_cnn
#' @examplesIf reticulate::py_module_available("tensorflow")
#' create_model_lstm_cnn_target_middle(
#' maxlen = 500,
#' vocabulary_size = 4,
#' kernel_size = c(8, 8, 8),
#' filters = c(16, 32, 64),
#' pool_size = c(3, 3, 3),
#' layer_lstm = c(32, 64),
#' layer_dense = c(128, 4),
#' learning_rate = 0.001)
#'
#' @returns A keras model with two input layers. Consists of LSTN, CNN and dense layers.
#' @export
create_model_lstm_cnn_target_middle <- function(
maxlen = 50,
dropout_lstm = 0,
recurrent_dropout_lstm = 0,
layer_lstm = 128,
solver = "adam",
learning_rate = 0.001,
vocabulary_size = 4,
bidirectional = FALSE,
stateful = FALSE,
batch_size = NULL,
padding = "same",
compile = TRUE,
layer_dense = NULL,
kernel_size = NULL,
filters = NULL,
pool_size = NULL,
strides = NULL,
label_input = NULL,
zero_mask = FALSE,
label_smoothing = 0,
label_noise_matrix = NULL,
last_layer_activation = "softmax",
loss_fn = "categorical_crossentropy",
num_output_layers = 1,
f1_metric = FALSE,
auc_metric = FALSE,
bal_acc = FALSE,
verbose = TRUE,
batch_norm_momentum = 0.99,
model_seed = NULL,
mixed_precision = FALSE,
mirrored_strategy = NULL) {
if (mixed_precision) tensorflow::tf$keras$mixed_precision$set_global_policy("mixed_float16")
if (is.null(mirrored_strategy)) mirrored_strategy <- ifelse(count_gpu() > 1, TRUE, FALSE)
if (mirrored_strategy) {
mirrored_strategy <- tensorflow::tf$distribute$MirroredStrategy()
with(mirrored_strategy$scope(), {
argg <- as.list(environment())
argg$mirrored_strategy <- FALSE
model <- do.call(create_model_lstm_cnn_target_middle, argg)
})
return(model)
}
layer_dense <- as.integer(layer_dense)
if (!is.null(model_seed)) tensorflow::tf$random$set_seed(model_seed)
use.cnn <- ifelse(!is.null(kernel_size), TRUE, FALSE)
num_targets <- layer_dense[length(layer_dense)]
layers.lstm <- length(layer_lstm)
stopifnot(length(layer_lstm) == 1 | (length(layer_lstm) == layers.lstm))
stopifnot(maxlen > 0)
stopifnot(dropout_lstm <= 1 & dropout_lstm >= 0)
stopifnot(recurrent_dropout_lstm <= 1 & recurrent_dropout_lstm >= 0)
if (!is.null(layer_lstm)) {
stopifnot(length(layer_lstm) == 1 | (length(layer_lstm) == layers.lstm))
}
if (is.null(strides)) {
strides <- rep(1L, length(filters))
}
if (use.cnn) {
same_length <- (length(kernel_size) == length(filters)) & (length(filters) == length(strides))
if (!same_length) {
stop("kernel_size, filters and strides must have the same length")
}
}
# length of split sequences
maxlen_1 <- ceiling(maxlen/2)
maxlen_2 <- floor(maxlen/2)
if (stateful) {
input_tensor_1 <- keras::layer_input(batch_shape = c(batch_size, maxlen_1, vocabulary_size))
} else {
input_tensor_1 <- keras::layer_input(shape = c(maxlen_1, vocabulary_size))
}
if (use.cnn) {
for (i in 1:length(filters)) {
if (i == 1) {
output_tensor_1 <- input_tensor_1 %>%
keras::layer_conv_1d(
kernel_size = kernel_size[i],
padding = padding,
activation = "relu",
filters = filters[i],
strides = strides[i],
input_shape = switch(stateful + 1, c(maxlen, vocabulary_size), NULL)
)
if (!is.null(pool_size) && pool_size[i] > 1) {
output_tensor_1 <- output_tensor_1 %>% keras::layer_max_pooling_1d(pool_size = pool_size[i])
}
output_tensor_1 <- output_tensor_1 %>% keras::layer_batch_normalization(momentum = batch_norm_momentum)
} else {
output_tensor_1 <- output_tensor_1 %>%
keras::layer_conv_1d(
kernel_size = kernel_size[i],
padding = padding,
activation = "relu",
strides = strides[i],
filters = filters[i]
)
if (!is.null(pool_size) && pool_size[i] > 1) {
output_tensor_1 <- output_tensor_1 %>% keras::layer_max_pooling_1d(pool_size = pool_size[i])
}
output_tensor_1 <- output_tensor_1 %>% keras::layer_batch_normalization(momentum = batch_norm_momentum)
}
}
} else {
if (zero_mask) {
output_tensor_1 <- input_tensor_1 %>% keras::layer_masking()
} else {
output_tensor_1 <- input_tensor_1
}
}
# lstm layers
if (!is.null(layers.lstm) && layers.lstm > 0) {
if (layers.lstm > 1) {
if (bidirectional) {
for (i in 1:(layers.lstm - 1)) {
output_tensor_1 <- output_tensor_1 %>%
keras::bidirectional(
input_shape = switch(stateful + 1, c(maxlen, vocabulary_size), NULL),
keras::layer_lstm(
units = layer_lstm[i],
return_sequences = TRUE,
dropout = dropout_lstm,
recurrent_dropout = recurrent_dropout_lstm,
stateful = stateful,
recurrent_activation = "sigmoid"
)
)
}
} else {
for (i in 1:(layers.lstm - 1)) {
output_tensor_1 <- output_tensor_1 %>%
keras::layer_lstm(
units = layer_lstm[i],
input_shape = switch(stateful + 1, c(maxlen, vocabulary_size), NULL),
return_sequences = TRUE,
dropout = dropout_lstm,
recurrent_dropout = recurrent_dropout_lstm,
stateful = stateful,
recurrent_activation = "sigmoid"
)
}
}
}
# last LSTM layer
if (bidirectional) {
output_tensor_1 <- output_tensor_1 %>%
keras::bidirectional(
input_shape = switch(stateful + 1, c(maxlen, vocabulary_size), NULL),
keras::layer_lstm(units = layer_lstm[length(layer_lstm)], dropout = dropout_lstm, recurrent_dropout = recurrent_dropout_lstm,
stateful = stateful, recurrent_activation = "sigmoid")
)
} else {
output_tensor_1 <- output_tensor_1 %>%
keras::layer_lstm(units = layer_lstm[length(layer_lstm)],
input_shape = switch(stateful + 1, c(maxlen, vocabulary_size), NULL),
dropout = dropout_lstm, recurrent_dropout = recurrent_dropout_lstm, stateful = stateful,
recurrent_activation = "sigmoid")
}
}
if (stateful) {
input_tensor_2 <- keras::layer_input(batch_shape = c(batch_size, maxlen_2, vocabulary_size))
} else {
input_tensor_2 <- keras::layer_input(shape = c(maxlen_2, vocabulary_size))
}
if (use.cnn) {
for (i in 1:length(filters)) {
if (i == 1) {
output_tensor_2 <- input_tensor_2 %>%
keras::layer_conv_1d(
kernel_size = kernel_size[i],
padding = padding,
activation = "relu",
filters = filters[i],
strides = strides[i],
input_shape = switch(stateful + 1, c(maxlen, vocabulary_size), NULL)
)
if (!is.null(pool_size) && pool_size[i] > 1) {
output_tensor_2 <- output_tensor_2 %>% keras::layer_max_pooling_1d(pool_size = pool_size[i])
}
output_tensor_2 <- output_tensor_2 %>% keras::layer_batch_normalization(momentum = batch_norm_momentum)
} else {
output_tensor_2 <- output_tensor_2 %>%
keras::layer_conv_1d(
kernel_size = kernel_size[i],
padding = padding,
activation = "relu",
strides = strides[i],
filters = filters[i]
)
if (!is.null(pool_size) && pool_size[i] > 1) {
output_tensor_2 <- output_tensor_2 %>% keras::layer_max_pooling_1d(pool_size = pool_size[i])
}
output_tensor_2 <- output_tensor_2 %>% keras::layer_batch_normalization(momentum = batch_norm_momentum)
}
}
} else {
if (zero_mask) {
output_tensor_2 <- input_tensor_2 %>% keras::layer_masking()
} else {
output_tensor_2 <- input_tensor_2
}
}
# lstm layers
if (!is.null(layers.lstm) && layers.lstm > 0) {
if (layers.lstm > 1) {
if (bidirectional) {
for (i in 1:(layers.lstm - 1)) {
output_tensor_2 <- output_tensor_2 %>%
keras::bidirectional(
input_shape = switch(stateful + 1, c(maxlen, vocabulary_size), NULL),
keras::layer_lstm(
units = layer_lstm[i],
return_sequences = TRUE,
dropout = dropout_lstm,
recurrent_dropout = recurrent_dropout_lstm,
stateful = stateful,
recurrent_activation = "sigmoid"
)
)
}
} else {
for (i in 1:(layers.lstm - 1)) {
output_tensor_2 <- output_tensor_2 %>%
keras::layer_lstm(
units = layer_lstm[i],
input_shape = switch(stateful + 1, c(maxlen, vocabulary_size), NULL),
return_sequences = TRUE,
dropout = dropout_lstm,
recurrent_dropout = recurrent_dropout_lstm,
stateful = stateful,
recurrent_activation = "sigmoid"
)
}
}
}
# last LSTM layer
if (bidirectional) {
output_tensor_2 <- output_tensor_2 %>%
keras::bidirectional(
input_shape = switch(stateful + 1, c(maxlen, vocabulary_size), NULL),
keras::layer_lstm(units = layer_lstm[length(layer_lstm)], dropout = dropout_lstm, recurrent_dropout = recurrent_dropout_lstm,
stateful = stateful, recurrent_activation = "sigmoid")
)
} else {
output_tensor_2 <- output_tensor_2 %>%
keras::layer_lstm(units = layer_lstm[length(layer_lstm)],
input_shape = switch(stateful + 1, c(maxlen, vocabulary_size), NULL),
dropout = dropout_lstm, recurrent_dropout = recurrent_dropout_lstm, stateful = stateful,
recurrent_activation = "sigmoid")
}
}
output_tensor <- keras::layer_concatenate(list(output_tensor_1, output_tensor_2))
if (layers.lstm == 0) {
output_tensor <- output_tensor %>% keras::layer_flatten()
}
if (!is.null(label_input)) {
input_label_list <- list()
for (i in 1:length(label_input)) {
if (!stateful) {
eval(parse(text = paste0("label_input_layer_", as.character(i), "<- keras::layer_input(c(label_input[i]))")))
} else {
eval(parse(text = paste0("label_input_layer_", as.character(i), "<- keras::layer_input(batch_shape = c(batch_size, label_input[i]))")))
}
input_label_list[[i]] <- eval(parse(text = paste0("label_input_layer_", as.character(i))))
}
output_tensor <- keras::layer_concatenate(c(
input_label_list, output_tensor
)
)
}
if (length(layer_dense) > 1) {
for (i in 1:(length(layer_dense) - 1)) {
output_tensor <- output_tensor %>% keras::layer_dense(units = layer_dense[i], activation = "relu")
}
}
if (num_output_layers == 1) {
output_tensor <- output_tensor %>%
keras::layer_dense(units = num_targets, activation = last_layer_activation, dtype = "float32")
} else {
output_list <- list()
for (i in 1:num_output_layers) {
layer_name <- paste0("output_", i, "_", num_output_layers)
output_list[[i]] <- output_tensor %>%
keras::layer_dense(units = num_targets, activation = last_layer_activation, name = layer_name, dtype = "float32")
}
}
# print model layout to screen
if (!is.null(label_input)) {
label_inputs <- list()
for (i in 1:length(label_input)) {
eval(parse(text = paste0("label_inputs$label_input_layer_", as.character(i), "<- label_input_layer_", as.character(i))))
}
model <- keras::keras_model(inputs = c(label_inputs, input_tensor_1, input_tensor_2), outputs = output_tensor)
} else {
model <- keras::keras_model(inputs = list(input_tensor_1, input_tensor_2), outputs = output_tensor)
}
if (compile) {
model <- compile_model(model = model, label_smoothing = label_smoothing, layer_dense = layer_dense,
solver = solver, learning_rate = learning_rate, loss_fn = loss_fn,
num_output_layers = num_output_layers, label_noise_matrix = label_noise_matrix,
bal_acc = bal_acc, f1_metric = f1_metric, auc_metric = auc_metric)
}
argg <- c(as.list(environment()))
model <- add_hparam_list(model, argg)
reticulate::py_set_attr(x = model, name = "hparam", value = model$hparam)
if (verbose) model$summary()
return(model)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.