# Example where most informative feature in training data is not
# present in the test set.
# install to a temp dir
tmp_lib <- "E:/Work/Code/tmp_lib"
dir.create(tmp_lib)
devtools::install_local("E:/Work/Code/robencla/", lib = tmp_lib, force = T, upgrade='never')
## restart R
## explicitly load the affected packages from the temporary library
library(robencla, lib.loc = tmp_lib)
## OR from github ##
#devtools::install_github('gibbsdavidl/robencla', ref ="allpairs_within", force = T, upgrade='never')
#library(robencla)
######################################################
mod <- Robencla$new("Test3")
mod$version()
# only pair these features
my_pairs <- sapply(1:24, function(i) paste0('X',i))
# xgboost parameters
params <- list(
max_depth=12, # "height" of the tree, 6 is actually default. I think about 12 seems better. (xgboost parameter)
eta=0.3, # this is the learning rate. smaller values slow it down, more conservative (xgboost parameter)
nrounds=48, # number of rounds of training, lower numbers less overfitting (potentially) (xgboost parameter)
early_stopping_rounds=2, # number of rounds without improvment stops the training (xgboost early_stopping_rounds)
nthreads=4, # parallel threads
gamma=0.3, # Minimum loss reduction to again partition a leaf node. higher number ~ more conservative
lambda=1.3, # L2 regularization term on weights, higher number ~ more conservative (xgboost parameter)
alpha=0.3, # L1 regularization term on weights. higher number ~ more conservative (xgboost parameter)
size=15, # Size of the ensemble, per binary prediction
sample_prop=0.8, # The percentage of data used to train each ensemble member.
feature_prop=0.8, # The percentage of data used to train each ensemble member.
subsample=0.8, # the xgboost machines subsample at this rate.
combine_function='majority', # How the ensemble should be combined. Only median currently.
verbose=0)
# split the data, train and test
mod$train(data_file='examples/data/missing_informative_train_data.csv',
label_name='label',
sample_id = NULL,
data_mode=c('pairs'), # allpairs, pairs, namedpairs, sigpairs, quartiles,tertiles,binary,ranks,original
pair_list=my_pairs,
signatures=NULL,
params=params)
mod$predict(data_file='examples/data/missing_informative_test_data.csv',
label_name='label'
)
# print the test data results table
mod$results() %>% head() %>% print()
# get a confusion matrix
table(Label=mod$test_label, Pred=mod$results()$BestCalls)
# metrics on the test set predictions
mod$classification_metrics() %>% print()
# and get the importance of features in each ensemble member
mod$importance() %>% print()
# plot the ROC curves for each class
## IF THE ROC IS UPSIDE DOWN, SET FLIP=T
ensemble_rocs(mod) # uses the last fold trained.
# The final scores
plot_pred_final(mod)
# scores for each label
plot_pred_heatmap(mod,
label = 'label_1',
cluster = T)
plot_pred_heatmap(mod,
label = 'label_2',
cluster = T)
plot_pred_heatmap(mod,
label = 'label_3',
cluster = T)
### result of applying different combination functions.
# weighted mean
weif <- function(x) {
x <- sort(x, decreasing = T)
xsum <- tanh( sum( sapply(1:length(x), function(a) (1/(a))*x ) ) )
return(xsum)
}
# majority vote
majv <- function(x) {
sum(x > 0.5)
}
l1preds <- mod$ensbl$label_1$pred_table
labeldf <- data.frame(label=mod$test_label)
boxplot(apply(l1preds, 1, mean) ~ labeldf$label, main='mean')
boxplot(apply(l1preds, 1, weif) ~ labeldf$label, main='weif', outline=F)
boxplot(apply(l1preds, 1, majv) ~ labeldf$label, main='maj')
l2preds <- mod$ensbl$label_2$pred_table
labeldf <- data.frame(label=mod$test_label)
boxplot(apply(l2preds, 1, mean) ~ labeldf$label, main='mean')
boxplot(apply(l2preds, 1, median) ~ labeldf$label, main='median')
boxplot(apply(l2preds, 1, max) ~ labeldf$label, main='max')
l3preds <- mod$ensbl$label_3$pred_table
labeldf <- data.frame(label=mod$test_label)
boxplot(apply(l3preds, 1, mean) ~ labeldf$label, main='mean')
boxplot(apply(l3preds, 1, median) ~ labeldf$label, main='median')
boxplot(apply(l3preds, 1, max) ~ labeldf$label, main='max')
cpreds <- mod$pred_table
cpreds$label <- mod$test_label
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.