## 5.0 Single fold {{{---------------
#' Title
#'
#' @param obs
#' @param k
#'
#' @return
#' @export
#'
singlefold <- function(obs, k) {
if (k == 1) {
return(rep(1, obs))
}
else {
i <- obs/k
if (i < 1) {
stop("insufficient records:", obs,
", with k=", k)
}
i <- round(c(0, i * 1:(k - 1), obs))
times = i[-1] - i[-length(i)]
group <- c()
for (j in 1:(length(times))) {
group <- c(group, rep(j, times = times[j]))
}
r <- order(runif(obs))
return(group[r])
}
}
## }}}------------------
## 5.1 K-fold dismo {{{-----------------------
#' Title
#' @details adapted from R package dismo
#' ??dismo # Species Distribution Modeling
# library(dismo)
# ?dismo
#' @param x
#' @param k
#' @param by
#'
#' @return
#' @export
#'
#' @examples
#'
#'
kfold.dismo <- function (x, k = 5, by = NULL) {
if (is.vector(x)) {
if (length(x) == 1) {
if (x > 1) {
x <- 1:x
}
}
obs <- length(x)
}
else if (inherits(x, "Spatial")) {
if (inherits(x, "SpatialPoints")) {
obs <- nrow(coordinates(x))
}
else {
obs <- nrow(x@data)
}
}
else {
obs <- nrow(x)
}
if (is.null(by)) {
return(singlefold(obs, k))
}
by = as.vector(as.matrix(by))
if (length(by) != obs) {
stop("by should be a vector with the same number of records as x")
}
un <- unique(by)
group <- vector(length = obs)
for (u in un) {
i = which(by == u)
kk = min(length(i), k)
if (kk < k)
warning("lowered k for by group: ", u, " because the number of observations was ",
length(i))
group[i] <- singlefold(length(i), kk)
}
return(group)
}
## 5.2 cv_T_group_fun{{{-----------------
#' Title
#'
#' @param Y
#' @param X
#' @param treeinfo
#' @param alpha
#' @param cutoff
#' @param model
#' @param err.conv
#' @param iter.max
#' @param L.init
#' @param lambda.max
#' @param lambda.min
#' @param nfolds
#' @param CV
#' @param cv.ind
#'
#' @return
#' @export
#'
cv_T_group_fun <-
function(Y, X,
treeinfo,
alpha = 0.5,
cutoff = 0.8,
model = "dirmult",
err.conv = 1e-3,
iter.max = 30,
L.init = NULL,
lambda.max = NULL,
lambda.min = NULL,
nfolds = 10,
CV = T,
cv.ind = NULL) {
output <- T_group_path(Y, X,
treeinfo,
alpha,
cutoff,
model,
err.conv,
iter.max,
L.init,
lambda.max,
lambda.min)
# cross validation starts here
if (CV == F) {
return(output)
}
## cross validation
else {
output.path <- output$output.path
path.length <- length(output.path)
lambda.max <- output.path[[1]]$lambda
lambda.min <- output.path[[path.length]]$lambda
E <- matrix(NA, nrow = nfolds, ncol = path.length)
if (is.null(cv.ind)) cv.ind <- kfold.dismo(1 : dim(X)[1], nfolds)
for (i in 1 : nfolds) {
cat("Starting CV fold #", i, sep = "", "\n")
X1 <- X[cv.ind != i, , drop = FALSE]
Y1 <- Y[cv.ind != i, , drop = FALSE]
X2 <- X[cv.ind == i, , drop = FALSE]
Y2 <- Y[cv.ind == i, , drop = FALSE]
output.i <- T_group_path(Y1, X1, treeinfo,
alpha, cutoff = 1,
model, err.conv, iter.max,
L.init, lambda.max,
lambda.min)
output.path.i <- output.i$output.path
path.length.i <- length(output.path.i)
for (j in 1 : path.length.i) {
pred.Y2.i.j <- pred_Y(Y2, X2, output.path.i[[j]]$B, treeinfo)
E[i, j] <- sum((Y2 - pred.Y2.i.j)^2 / pred.Y2.i.j / rowSums(Y2))
}
}
cve <- apply(E, 2, mean, na.rm = T)
cvse <- apply(E, 2, sd, na.rm = T) / sqrt(nfolds)
min.i <- which.min(cve)[1]
min.1se <- which(cve <= cve[min.i] + cvse[min.i])[1]
output.cv <- list(cve = cve,
cvse = cvse,
min.i = min.i,
min.1se = min.1se,
E = E,
output = output)
return(output.cv)
}
}
## }}}---------------------------
## 5.3 IC_fun {{{----------------------
#' Title Getting the information criteria
#'
#' @param output
#' @param Y
#' @param X
#' @param treeinfo
#' @param model
IC_fun <- function(output,
Y, X,
treeinfo,
model = "dirmult") {
print("lasso and group_lasso_only!")
n <- dim(X)[1]
Ytree <- Y_tree(Y, treeinfo)
Aic.list <- Bic.list <-
Df.list <- list()
Aic <- Bic <- Df.Aic <-
Df.Bic <- min.i.Aic <- min.i.Bic <-
rep(NA, length(output))
for (j in 1 : length(output)) {
output.path.j <- output[[j]]$output.path
alpha.j <- output[[j]]$alpha
Aic.j <- Bic.j <- Df.j <- NULL
for (k in 1 : length(output.path.j)) {
B.j.k <- output.path.j[[k]]$B
loglik.j.k <- Loglik_Dirichlet_tree(Ytree, X, B.j.k, model = model)
dev.j.k <- -2 * loglik.j.k * n
if (alpha.j == 1) {
Df.j.k <- sum(colSums(B.j.k[, -1] != 0) != 0) * dim(B.j.k[, -1])[1]
} else {
Df.j.k <- sum(B.j.k[, -1] != 0)
}
Aic.j.k <- dev.j.k + Df.j.k * 2
Bic.j.k <- dev.j.k + Df.j.k * log(n)
Df.j <- c(Df.j, Df.j.k)
Aic.j <- c(Aic.j, Aic.j.k)
Bic.j <- c(Bic.j, Bic.j.k)
}
Df.list[[j]] <- Df.j
Aic.list[[j]] <- Aic.j
Bic.list[[j]] <- Bic.j
min.i.Aic[j] <- which.min(Aic.j)[1]
Df.Aic[j] <- Df.j[min.i.Aic[j]]
Aic[j] <- Aic.j[min.i.Aic[j]]
min.i.Bic[j] <- which.min(Bic.j)[1]
Df.Bic[j] <- Df.j[min.i.Bic[j]]
Bic[j] <- Bic.j[min.i.Bic[j]]
}
return(list(Aic = Aic,
Bic = Bic,
Df.Aic = Df.Aic,
Df.Bic = Df.Bic,
min.i.Aic = min.i.Aic,
min.i.Bic = min.i.Bic,
Aic.list = Aic.list,
Bic.list = Bic.list,
Df.list = Df.list))
}
## }}}-----------------
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.