#' @title A wrapper for pcaMethods function implementations
#'
#' @description Implements the equivalent of
#' \code{\link[pcaMethods:pca]{pca}}.
#' This function preprocesses the data as specified by the user,
#' then calls ppcapM or bpcapM, and finally handles this output
#' to return a list. One element of the output is a pcaRes object.
#'
#' @param myMat \code{matrix} -- Data matrix with
#' variables in columns and observations in rows. The
#' data may contain missing values, denoted as \code{NA}.
#' @param nPcs \code{numeric} -- Number of components used for
#' re-estimation. Choosing few components may decrease the
#' estimation precision.
#' @param method \code{c("ppca", "bpca")} -- frequentist or
#' Bayesian estimation of model parameters.
#' @param seed \code{numeric} -- the random number seed used, useful
#' to specify when comparing algorithms.
#' @param threshold \code{numeric} -- Convergence threshold.
#' If the increase in precision of an update
#' falls below this then the algorithm is stopped.
#' @param maxIterations \code{numeric} -- Maximum number of estimation
#' steps.
#' @param center \code{logical} -- should the data be centered?
#' @param scale \code{c("none", "pareto", "vector", "uv")} --
#' which method of scaling should be used? See
#' \code{\link[pcaMethods:pca]{pca}}. Defaults to "none".
#' @param loglike \code{logical} -- should the log-likelihood
#' of the estimated parameters be returned? See Details.
#' @param verbose \code{logical} -- verbose intermediary
#' algorithm output.
#'
#' @details See \code{\link{ppcapM}} and \code{\link{bpcapM}} for
#' the algorithm specifics. \code{loglike} indicates whether
#' log-likelihood values for the resulting estimates should
#' be computed. This can be useful to compare different algorithms.
#'
#' @return {A \code{list} of 5 or 7 elements, depending on the value
#' of \code{loglike}:
#' \describe{
#' \item{W}{\code{matrix} -- the estimated loadings.}
#' \item{sigmaSq}{\code{numeric} -- the estimated isotropic variance.}
#' \item{Sigma}{\code{matrix} -- the estimated covariance matrix.}
#' \item{m}{\code{numeric} -- the estimated mean vector.}
#' \item{logLikeObs}{\code{numeric} -- the log-likelihood value
#' of the observed data given the estimated parameters.}
#' \item{logLikeImp}{\code{numeric} -- the log-likelihood value
#' of the imputed data given the estimated parameters.}
#' \item{pcaMethodsRes}{\code{class} --
#' see \linkS4class{pcaRes}.}
#' }}
#' @export
#'
#' @examples
#' # simulate a dataset from a zero mean factor model X = Wz + epsilon
#' # start off by generating a random binary connectivity matrix
#' n.factors <- 5
#' n.genes <- 200
#' # with dense connectivity
#' # set.seed(20)
#' conn.mat <- matrix(rbinom(n = n.genes*n.factors,
#' size = 1, prob = 0.7), c(n.genes, n.factors))
#'
#' # now generate a loadings matrix from this connectivity
#' loading.gen <- function(x){
#' ifelse(x==0, 0, rnorm(1, 0, 1))
#' }
#'
#' W <- apply(conn.mat, c(1, 2), loading.gen)
#'
#' # generate factor matrix
#' n.samples <- 100
#' z <- replicate(n.samples, rnorm(n.factors, 0, 1))
#'
#' # generate a noise matrix
#' sigma.sq <- 0.1
#' epsilon <- replicate(n.samples, rnorm(n.genes, 0, sqrt(sigma.sq)))
#'
#' # by the ppca equations this gives us the data matrix
#' X <- W%*%z + epsilon
#' WWt <- tcrossprod(W)
#' Sigma <- WWt + diag(sigma.sq, n.genes)
#'
#' # select 10% of entries to make missing values
#' missFrac <- 0.1
#' inds <- sample(x = 1:length(X),
#' size = ceiling(length(X)*missFrac),
#' replace = FALSE)
#'
#' # replace them with NAs in the dataset
#' missing.dataset <- X
#' missing.dataset[inds] <- NA
#'
#' # run ppca
#' ppm <- pcapM(t(missing.dataset), nPcs=5, method="bpca", seed=2009,
#' maxIterations=1000, center=TRUE, loglike=TRUE, verbose=TRUE)
#'
pcapM <- function(myMat, nPcs=2, method='ppca', seed=NA, threshold=1e-4,
maxIterations=1000, center = TRUE,
scale = c("none"),
loglike = TRUE, verbose=TRUE) {
## preprocessing
if (nPcs > ncol(myMat)) {
warning("more components than matrix columns requested")
nPcs <- min(dim(myMat))
}
if (nPcs > nrow(myMat)) {
warning("more components than matrix rows requested")
nPcs <- min(dim(myMat))
}
# any missing
missing <- is.na(myMat)
# scaling and centering
if(is.null(scale)){
scale = "none"
}
if (length(scale)!=1){
stop("scale must have length 1")
} else {
if(!(scale %in% c("none", "pareto", "vector", "uv"))){
stop("please provide a valid scaling method")
}
}
if(is.null(center)){
center = FALSE
}
if(!is.logical(center)){
stop("please provide TRUE or FALSE for centering")
}
if(center){
m <- colMeans(myMat, na.rm = TRUE)
}
else {
m <- rep(0, ncol(myMat))
}
myMat <- sweep(myMat, 2, m, "-")
if(scale=="none"){
sc <- rep(1, ncol(myMat))
}
if(scale=="uv"){
sc <- apply(myMat, 2, sd, na.rm = TRUE)
}
if (scale == "pareto") {
sc <- sqrt(apply(myMat, 2, sd, na.rm = TRUE))
}
if (scale == "vector") {
sc <- apply(myMat, 2, function(x){sqrt(sum(x^2, na.rm = TRUE))})
}
myMat <- sweep(myMat, 2, sc, "/")
# call to ppcapM or bpcapM
if (method=="ppca"){
res <- ppcapM(myMat, nPcs=nPcs, seed=seed, threshold=threshold,
maxIterations=maxIterations, loglike = loglike,
verbose=verbose)
} else if (method=="bpca"){
res <- bpcapM(myMat, nPcs=nPcs, threshold=threshold,
maxIterations=maxIterations, loglike = loglike,
verbose=verbose)
} else {
stop("The specified method must be either 'ppca' or 'bpca'")
}
# structure output
res$pcaMethodsRes@nPcs <- nPcs # do we need to edit this?
res$pcaMethodsRes@nObs <- nrow(myMat)
res$pcaMethodsRes@nVar <- ncol(myMat)
res$pcaMethodsRes@sDev <- apply(res$pcaMethodsRes@scores, 2, sd)
res$pcaMethodsRes@center <- m
res$pcaMethodsRes@centered <- center
res$pcaMethodsRes@scale <- sc
res$pcaMethodsRes@scaled <- scale
res$pcaMethodsRes@R2 <- res$pcaMethodsRes@R2cum[1]
if (length(res$pcaMethodsRes@R2cum) > 1) {
res$pcaMethodsRes@R2 <- c(res$pcaMethodsRes@R2,
diff(res$pcaMethodsRes@R2cum))
}
completeObs <- myMat
if(any(missing)){
recData <- tcrossprod(res$pcaMethodsRes@scores[, 1:nPcs, drop = FALSE],
res$pcaMethodsRes@loadings[, 1:nPcs, drop = FALSE])
recData <- sweep(recData, 2, sc, "*")
recData <- sweep(recData, 2, m, "+")
completeObs[missing] <- recData[missing]
}
res$pcaMethodsRes@completeObs <- completeObs
# return results
return(res)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.