#' @title SEIR+V+Mono Model
#' @description A model for influenza that uses a SEIR framework with age
#' structure and that allows for vaccination and subsequent monovalent vaccination
#' @param population Size of population; defaults to 1
#' @param populationFractions Vector of population fractions (all non-negative,
#' sum to 1); defaults to 1, representing a single population group
#' @param contactMatrix A matrix whose (row i, column j) entry denotes the
#' number of potentially infectious contacts a single individual from group j
#' has with individuals from group i each day; defaults to proportional mixing
#' @param R0 Average number of secondary cases from a single infected individual
#' in a completely susceptible population; must be specified
#' @param latentPeriod Latent period in days; must be specified
#' @param infectiousPeriod Infectious period in days; must be specified
#' @param seedInfections Fraction of the population to seed with infections;
#' single fraction, or vector of fractions by population group; defaults to 0
#' @param priorImmunity Fraction of the population with prior immunity; single
#' fraction, or vector of fractions by population group; defaults to 0
#' @param useCommunityMitigation Whether or not to use community mitigation
#' implemented by modulation of the contact matrix; defaults to FALSE
#' @param communityMitigationStartDay If using community mitigation, day of the
#' simulation on which to start mitigation; must be specified if applicable
#' @param communityMitigationDuration If using community mitigation, duration of
#' time during which mitigation is in effect; must be specified if applicable
#' @param communityMitigationMultiplier If using community mitigation, the
#' non-negative matrix of multipliers that will be used to modulate the contact
#' matrix by elementwise multiplication; must be specified if applicable
#' @param vaccineAdministrationRatePerDay Vaccine administration rate each day;
#' defaults to 0
#' @param vaccineAvailabilityDose1ByDay Vector that contains the amount of first dose of vaccine
#' available each day; defaults to 0
#' @param vaccineAvailabilityDoseMByDay Vector that contains the amount of monovalent vaccine
#' available each day; defaults to 0
#' @param vaccineUptakeMultiplier Vector of multipliers that determines the
#' relative rate at which vaccine is given to each age group; defaults to
#' vaccine being allotted proportionally by population
#' @param timeOfExclusiveMonovalent Time when a monovalent vaccine is exclusively administered. Defaults to never.
#' @param VEs1 Vaccine efficacy: protection for vaccinated susceptible
#' individuals after initial dose; single fraction or vector of fractions by
#' population group; defaults to 0
#' @param VEsM Vaccine efficacy: protection for vaccinated susceptible
#' individuals after monovalent dose; single fraction or vector of fractions by
#' population group; defaults to 0
#' @param VEi1 Vaccine efficacy: prevention of transmission from vaccinated
#' infected individuals after initial dose; single fraction or vector of fractions
#' by population group; defaults to 0
#' @param VEiM Vaccine efficacy: prevention of transmission from vaccinated
#' infected individuals after monovalent dose; single fraction or vector of fractions
#' by population group; defaults to 0
#' @param VEp1 Vaccine efficacy: prevention of symptomatic illness in
#' infected indivduals after initial dose; single fraction or vector of fractions
#' by population group; defaults to 0
#' @param VEpM Vaccine efficacy: prevention of symptomatic illness in
#' infected indivduals after monovalent dose; single fraction or vector of fractions
#' by population group; defaults to 0
#' @param vaccineEfficacyDelay Delay in days between administration of dose and
#' onset of protection; defaults to 7
#' @param simulationLength Number of days to simulate after seeding infections;
#' defaults to 240
#' @param seedStartDay Day on which to seed initial infections; defaults to 0
#' @param tolerance Absolute tolerance for numerical integration; defaults to
#' 1e-8
#' @param method Which integration method to use. Defaults to lsoda
#' @return a SEIRVMonoModel object
#' @export
SEIRVMonoModel <- function(population, populationFractions, contactMatrix, R0,
latentPeriod, infectiousPeriod, seedInfections, priorImmunity,
useCommunityMitigation, communityMitigationStartDay,
communityMitigationDuration, communityMitigationMultiplier,
vaccineAdministrationRatePerDay, vaccineAvailabilityDose1ByDay, vaccineAvailabilityDoseMByDay,
vaccineUptakeMultiplier, timeOfExclusiveMonovalent, VEs1, VEsM, VEi1, VEiM, VEp1, VEpM, vaccineEfficacyDelay,
simulationLength, seedStartDay, tolerance, method) {
#Check inputs
specifiedArguments <- names(match.call())[-1]
argumentList <- lapply(specifiedArguments, as.name)
names(argumentList) <- specifiedArguments
parameters <- do.call("checkInputs.SEIRVMono", argumentList) #Get parameters from checked inputs
initialState <- with(parameters, {
c(S = (1 - priorImmunity) * populationFractions,
E = 0 * populationFractions,
I = 0 * populationFractions,
R = priorImmunity * populationFractions,
Sv = 0 * populationFractions,
Ev = 0 * populationFractions,
Iv = 0 * populationFractions,
Rv = 0 * populationFractions,
SvM = 0 * populationFractions,
EvM = 0 * populationFractions,
IvM = 0 * populationFractions,
RvM = 0 * populationFractions,
V = 0 * populationFractions,
VM = 0 * populationFractions)
})
rawOutput <- integrateModel(initialState = initialState,
parameters = parameters,
derivativeFunction = getDerivative.SEIRVMono,
seedFunction = doSeed.SEIRVMono, method = method)
#Build the SEIRVMonoModel object to return
model <- list(parameters = parameters,
rawOutput = rawOutput)
class(model) <- c("SEIRVMonoModel", "SEIRVModel", "SEIRModel")
return(model)
}
#' @title Check SEIR+VM inputs
#' @description Checks the input parameters for the SEIR+V model
#' @return List of parameters for the SEIR+V model
#' @keywords internal
checkInputs.SEIRVMono <- function(population, populationFractions, contactMatrix, R0,
latentPeriod, infectiousPeriod, seedInfections, priorImmunity,
useCommunityMitigation, communityMitigationStartDay,
communityMitigationDuration, communityMitigationMultiplier,
vaccineAdministrationRatePerDay, vaccineAvailabilityDose1ByDay, vaccineAvailabilityDoseMByDay,
vaccineUptakeMultiplier, timeOfExclusiveMonovalent, VEs1, VEsM, VEi1, VEiM,
VEp1, VEpM, vaccineEfficacyDelay, simulationLength, seedStartDay, tolerance, method) {
specifiedArguments <- names(match.call())[-1]
argumentList <- lapply(specifiedArguments, as.name)
names(argumentList) <- specifiedArguments
SEIRParameters <- do.call("checkInputs.SEIR", argumentList)
#Update call to checkInputs.VaccineMDose using SEIRParameters
argumentList$population <- SEIRParameters$population
argumentList$populationFractions <- SEIRParameters$populationFractions
argumentList$seedStartDay <- SEIRParameters$seedStartDay
argumentList$simulationLength <- SEIRParameters$simulationLength
vaccineMDoseParameters <- do.call("checkInputs.VaccineMonovalent", argumentList)
#Return the parameters
return(c(SEIRParameters, vaccineMDoseParameters))
}
#' @title Check vaccine inputs
#' @description Checks vaccine inputs and computes the vaccine parameters
#' @return List of vaccine parameters
#' @keywords internal
checkInputs.VaccineMonovalent <- function(population, populationFractions, seedStartDay, simulationLength,
vaccineAdministrationRatePerDay = 0, vaccineAvailabilityDose1ByDay = 0,
vaccineAvailabilityDoseMByDay = 0,
vaccineUptakeMultiplier = 1, timeOfExclusiveMonovalent = Inf, VEs1 = 0, VEsM = 0,
VEi1 = 0, VEiM = 0, VEp1 = 0, VEpM = 0, vaccineEfficacyDelay = 7, ...) {
#Validate vaccine parameters
#vaccineAdministrationRatePerDay
checkNonNegativeNumber(vaccineAdministrationRatePerDay)
#vaccineAvailabilityDose1ByDay
checkNonNegative(vaccineAvailabilityDose1ByDay)
#vaccineAvailabilityDoseMByDay
checkNonNegative(vaccineAvailabilityDoseMByDay)
#vaccineUptakeMultiplier
checkNonNegative(vaccineUptakeMultiplier)
checkDimensionsMatch(vaccineUptakeMultiplier, populationFractions)
#timeOfExclusiveMonovalent
checkNonNegativeNumber(timeOfExclusiveMonovalent)
#VEs1
checkBetween0and1(VEs1)
checkDimensionsMatch(VEs1, populationFractions)
#VEi1
checkBetween0and1(VEi1)
checkDimensionsMatch(VEi1, populationFractions)
#VEp1
checkBetween0and1(VEp1)
checkDimensionsMatch(VEp1, populationFractions)
#VEsM
checkBetween0and1(VEsM)
checkDimensionsMatch(VEsM, populationFractions)
#VEiM
checkBetween0and1(VEiM)
checkDimensionsMatch(VEiM, populationFractions)
#VEpM
checkBetween0and1(VEpM)
checkDimensionsMatch(VEpM, populationFractions)
#vaccineEfficacyDelay
checkNonNegativeNumber(vaccineEfficacyDelay)
#Compute the daily vaccination rates for both doses
totalSimulationLength <- seedStartDay + simulationLength
vaccinationRateDose1ByDay <- rep(0, totalSimulationLength)
vaccinationRateDoseMByDay <- rep(0, totalSimulationLength)
currentVaccineAvailabilityDose1 <- 0
currentVaccineAvailabilityDoseM <- 0
for (i in 1:totalSimulationLength) {
if (i <= length(vaccineAvailabilityDose1ByDay)){
currentVaccineAvailabilityDose1 <- currentVaccineAvailabilityDose1 + vaccineAvailabilityDose1ByDay[i]
}
if (i <= length(vaccineAvailabilityDoseMByDay)){
currentVaccineAvailabilityDoseM <- currentVaccineAvailabilityDoseM + vaccineAvailabilityDoseMByDay[i]
}
vaccinationRateDoseMByDay[i] <- min(vaccineAdministrationRatePerDay, currentVaccineAvailabilityDoseM)
# Presume that we give dose 1 along with the monovalent
currentVaccineAvailabilityDose1 <- currentVaccineAvailabilityDose1 - vaccinationRateDoseMByDay[i]
# Give dose 1 if we don't have enough monovalent to give
vaccinationRateDose1ByDay[i] <- ifelse(i < timeOfExclusiveMonovalent,
max(min(vaccineAdministrationRatePerDay - vaccinationRateDoseMByDay[i],
currentVaccineAvailabilityDose1), 0), 0)
currentVaccineAvailabilityDose1 <- currentVaccineAvailabilityDose1 - vaccinationRateDose1ByDay[i]
currentVaccineAvailabilityDoseM <- currentVaccineAvailabilityDoseM - vaccinationRateDoseMByDay[i]
}
vaccinationRateDose1ByDay <- vaccinationRateDose1ByDay / population #Normalize
vaccinationRateDoseMByDay <- vaccinationRateDoseMByDay / population #Normalize
#Define vaccination rate functions
vaccinationRateDose1 <- function(t) {
if ((t < vaccineEfficacyDelay) || (t >= totalSimulationLength + vaccineEfficacyDelay)) {
return(0)
} else {
return(vaccinationRateDose1ByDay[floor(t - vaccineEfficacyDelay + 1)])
}
}
vaccinationRateDoseM <- function(t) {
if ((t < vaccineEfficacyDelay) || (t >= totalSimulationLength + vaccineEfficacyDelay)) {
return(0)
} else {
return(vaccinationRateDoseMByDay[floor(t - vaccineEfficacyDelay + 1)])
}
}
#Compute the vaccination rate age multiplier
vaccinationRateAgeMultiplier <- vaccineUptakeMultiplier * populationFractions
totalMultiplier <- sum(vaccinationRateAgeMultiplier)
if (totalMultiplier > 0) {
vaccinationRateAgeMultiplier <- vaccinationRateAgeMultiplier / totalMultiplier
} else {
warning("vaccineUptakeMultiplier prevents vaccination from occurring.", call. = FALSE)
}
#Return the parameters
return(list(vaccinationRateDose1 = vaccinationRateDose1,
vaccinationRateDoseM = vaccinationRateDoseM,
vaccinationRateAgeMultiplier = vaccinationRateAgeMultiplier,
timeOfExclusiveMonovalent = timeOfExclusiveMonovalent, VEs1 = VEs1, VEsM = VEsM,
VEi1 = VEi1, VEiM = VEiM, VEp1 = VEp1, VEpM = VEpM, vaccineEfficacyDelay = vaccineEfficacyDelay))
}
#This is a utility function that reconstructs the model state as a list so that equations can refer to compartments by name
reconstructState.SEIRVMono <- function(state) {
numberOfClasses <- length(state) / 14 #Each of the 9 classes are vectors of the same length
S <- state[ 1 : numberOfClasses ]
E <- state[ (numberOfClasses + 1):(2 * numberOfClasses)]
I <- state[ (2 * numberOfClasses + 1):(3 * numberOfClasses)]
R <- state[ (3 * numberOfClasses + 1):(4 * numberOfClasses)]
Sv <- state[ (4 * numberOfClasses + 1):(5 * numberOfClasses)]
Ev <- state[ (5 * numberOfClasses + 1):(6 * numberOfClasses)]
Iv <- state[ (6 * numberOfClasses + 1):(7 * numberOfClasses)]
Rv <- state[ (7 * numberOfClasses + 1):(8 * numberOfClasses)]
SvM <- state[ (8 * numberOfClasses + 1):(9 * numberOfClasses)]
EvM <- state[ (9 * numberOfClasses + 1):(10 * numberOfClasses)]
IvM <- state[(10 * numberOfClasses + 1):(11 * numberOfClasses)]
RvM <- state[(11 * numberOfClasses + 1):(12 * numberOfClasses)]
V <- state[(12 * numberOfClasses + 1):(13 * numberOfClasses)]
VM <- state[(13 * numberOfClasses + 1):(14 * numberOfClasses)]
return(as.list(environment()))
}
#This function implements the multivariate derivative of the SEIR+VM model
#parameters should define populationFractions, contactMatrix, beta, lambda, gamma,
#VEs, VEi, and the function vaccinationRate(t)
#Note that the total population is normalized to be 1
getDerivative.SEIRVMono <- function(t, state, parameters) {
stateList <- reconstructState.SEIRVMono(state)
with(append(stateList, parameters), {
if (useCommunityMitigation) {
if ((t >= communityMitigationStartDay) && (t < communityMitigationEndDay)) {
contactMatrix <- communityMitigationMultiplier * contactMatrix
}
}
effectiveVaccinationDose1Multiplier <- sum(ifelse(V < populationFractions, 1, 0) * vaccinationRateAgeMultiplier)
if (effectiveVaccinationDose1Multiplier > 0) {
vaccinationRateDose1ByAge <- vaccinationRateDose1(t) * vaccinationRateAgeMultiplier /
effectiveVaccinationDose1Multiplier
} else {
vaccinationRateDose1ByAge <- 0
}
effectiveVaccinationDoseMMultiplier <- sum(ifelse(VM < populationFractions, 1, 0) * vaccinationRateAgeMultiplier)
if (effectiveVaccinationDoseMMultiplier > 0) {
vaccinationRateDoseMByAge <- vaccinationRateDoseM(t) * vaccinationRateAgeMultiplier /
effectiveVaccinationDoseMMultiplier
} else {
vaccinationRateDoseMByAge <- 0
}
#Flows
forceOfInfection <- beta / populationFractions * (contactMatrix %*% (I + ((1 - VEi1) * Iv) + ((1 - VEiM) * IvM)))
S_to_E <- S * forceOfInfection
E_to_I <- lambda * E
I_to_R <- gamma * I
Sv_to_Ev <- Sv * (1 - VEs1) * forceOfInfection
Ev_to_Iv <- lambda * Ev
Iv_to_Rv <- gamma * Iv
SvM_to_EvM <- SvM * (1 - VEsM) * forceOfInfection
EvM_to_IvM <- lambda * EvM
IvM_to_RvM <- gamma * IvM
# Presume that only new people get monovalent vaccine
S_to_Sv <- ifelse(V < populationFractions, vaccinationRateDose1ByAge * S / (populationFractions - V), 0)
# S_to_SvM <- ifelse(VM < populationFractions, vaccinationRateDoseMByAge * S^2 / ((S + Sv) * (populationFractions - VM - V)), 0)
# Sv_to_SvM <- ifelse(VM < populationFractions, vaccinationRateDoseMByAge * Sv^2 / ((S + Sv) * (V - VM)), 0)
S_to_SvM <- ifelse(VM + V < populationFractions, vaccinationRateDoseMByAge * S / ( (populationFractions - VM - V)), 0)
Sv_to_SvM <- 0
#Derivatives
#Non-vaccinated compartments
dS <- -S_to_E - S_to_Sv - S_to_SvM
dE <- S_to_E - E_to_I
dI <- E_to_I - I_to_R
dR <- I_to_R
#Vaccinated compartments
dSv <- -Sv_to_Ev + S_to_Sv - Sv_to_SvM
dEv <- Sv_to_Ev - Ev_to_Iv
dIv <- Ev_to_Iv - Iv_to_Rv
dRv <- Iv_to_Rv
dSvM <- -SvM_to_EvM + Sv_to_SvM + S_to_SvM
dEvM <- SvM_to_EvM - EvM_to_IvM
dIvM <- EvM_to_IvM - IvM_to_RvM
dRvM <- IvM_to_RvM
#Auxiliary vaccinated compartment
# Would theoretically give V to everyone who gets VM, but it's difficult to track that, so only track V by itself
dV <- ifelse(V < populationFractions, vaccinationRateDose1ByAge, 0) #+ ifelse(VM < populationFractions, vaccinationRateDoseMByAge, 0)
#Auxiliary vaccinated compartment - people with monovalent dose
dVM <- ifelse(VM + V < populationFractions, vaccinationRateDoseMByAge, 0)
#Return derivative
return(list(c(dS, dE, dI, dR, dSv, dEv, dIv, dRv, dSvM, dEvM, dIvM, dRvM, dV, dVM)))
})
}
#This function implements seeding infections in the SEIR+V model
#parameters should define seedInfections, lambda, and gamma
doSeed.SEIRVMono <- function(state, parameters) {
stateList <- reconstructState.SEIRVMono(state)
with(append(stateList, parameters), {
seedInfectionsFractions <- seedInfections / population
S <- S - seedInfectionsFractions
E <- E + seedInfectionsFractions / (1 + lambda / gamma)
I <- I + seedInfectionsFractions / (1 + gamma / lambda)
#Return derivative
return(c(S, E, I, R, Sv, Ev, Iv, Rv, SvM, EvM, IvM, RvM, V, VM))
})
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.